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We propose a new method for measuring real and imagi-
nary parts of the complex degree of coherence of a classical
field obeying Gaussian statistics. Our method is based on
mixing incoherently a coherent Gaussian beam, a local os-
cillator, and the statistical field. We stress that our approach
is especially beneficial for revealing the complex degree of
coherence of inhomogeneous two-dimensional fields. As an
illustration, we report the complex degree of the coherence
measurement of a complex Gaussian-correlated beam. Our
method can find applications in image transmission and
recovery. © 2016 Optical Society of America

OCIS codes: (030.1640) Coherence; (030.1670) Coherent optical
effects.
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Spatial coherence is among the fundamental characteristics of
light describing the nature of light fluctuations at two or more
points within the electric field [1]. The complex degree of co-
herence (CDOC) of a conventional partially coherent beam
(i.e., a Gaussian Schell-model beam) is Gaussian [2,3]. In recent
years, it has been firmly established that one can manipulate the
CDOC of statistical beams [4–12], and beams with engineered
CDOC exhibit many extraordinary properties on propagation,
such as self-focusing [5], self-shaping [7,8], self-splitting [9] and
self-periodicity [10,11]. The CDOC of partially coherent vortex
beams, while Gaussian in the source plane, displays ring dislo-
cations in the far field or in the focal plane of a thin lens. The
number of such ring dislocations is determined by the magnitude
of its topological charge [13–17]. Further, one can simultane-
ously determine the magnitude and the sign of the topological
charge throughmeasuring the CDOC of a partially coherent vor-
tex beam after having transmitted it through a couple of cylin-
drical lenses [18]. More recently, we have reported the first
experimental generation of optical coherence lattices carrying
image information [19]. We have also predicted that the image

information can be recovered from the Fourier transform of its
CDOC [19]. The presented examples illustrate the importance
of statistical light CDOC measurements.

To date, a number of techniques for measuring the CDOC
have been proposed. All of them, however, have their limitations.
A classic Hanbury Brown and Twiss (HBT) type experiment
(intensity–intensity correlation measurements) [8,11] can be
used to measure only the magnitude of the CDOC [20]. In
principle, wavefront folding interferometry [15,16], Young’s
double-slit experiment [1,21], Young’s boundary diffraction
wave technique [22], and the phase-space-based approaches
[23,24] allow us to measure both the magnitude and phase
of the CDOC. In practice, however, most measurement methods
proposed so far face difficulties whenever CDOC measurements
of two-dimensional highly inhomogeneous, beam-like fields are
required. In particular, wavefront folding interferometry and
Young’s interference techniques [1,5,16,21] call for a prohibitive
number of measurements for the optical beam CDOC recovery.
The boundary diffraction wave approach permits the CDOC
measurement of a special type of vortex beams with a separable
phase [22], while phase space approaches have so far been limited
to CDOC measurements of uniform or nearly uniform
Gaussian-correlated two-dimensional fields [24]. Thus, an effi-
cient method for CDOC measurements of two-dimensional
beams is still missing. The latter will enable one to comprehen-
sively describe realistic partially coherent beam propagation or to
recover the image information from the CDOC [19].

In this Letter, we propose a method for determining the real
and imaginary parts of the CDOC of classical random beams
obeying Gaussian statistics through an incoherent superposi-
tion of such beams with a strong coherent beam. In our
method, the CDOC magnitude is determined directly through
measuring its intensity–intensity correlations, while the real
part of the CDOC is determined through measuring the
intensity–intensity correlation function of a combined beam.
The novelty of our method is in tailoring the strong coherent
beam profile to ensure accuracy of the CDOC measurement.

Letter Vol. 42, No. 1 / January 1 2017 / Optics Letters 77

0146-9592/17/010077-04 Journal © 2017 Optical Society of America



To illustrate our method, we recover the CDOC of a complex
Gaussian-correlated beam.

Figure 1 shows the schematics for the incoherent superpo-
sition of a partially coherent beam (PCB) and a coherent beam
(CB). r ≡ !x; y" is an arbitrary coordinate in the source plane.
The proposed setup is essentially the one used for homodyne
detection in quantum optics [1]. A strong coherent field
(e.g., Gaussian beam) is known as a local oscillator (LO),
and the input partially coherent beam is referred to as the sig-
nal. The electric field of the signal and the LO in the source
plane are ϵs!r" and jϵLO!r"j exp!−iϕ", respecitvely, with ϕ
being the phase of the LO. The electric field of the BS output
is then

E!r" # ϵs!r" $ jϵLO!r"j exp!−iϕ": (1)
It follows at once from Eq. (1) that the output intensity

distribution is given by the expression

I!r" ≡ jE!r"j2

# I s!r" $ ILO!r" $ ϵ%s !r"jϵLO!r"j exp!−iϕ" $ c:c:; (2)

where c.c. stands for the complex conjugate. The intensities of
the signal and the LO are expressed as I s!r" # jϵs!r"j2 and
ILO!r" # jϵLO!r"j2, respectively. The intensity–intensity cor-
relation function of the output is defined as [8,12]

G!2"
ϕ !r1; r2" # hI!r1"I!r2"i; (3)

where r1 ≡ !x1; y1" and r2 ≡ !x2; y2" are two arbitrary radius
vectors in the source plane; h·i denotes the ensemble average.
Assuming the local oscillator intensity dwarfs the signal inten-
sity, I s ≪ ILO, and keeping the terms only linear or higher
order in ILO, we obtain for the intensity–intensity correlation
the expression

G!2"
ϕ !r1; r2" # hI!r1"I!r2"i

≃ ILO!r1"ILO!r2" $ ILO!r1"hI s!r2"i$ ILO!r2"hI s!r1"i

$ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ILO!r1"ILO!r2"hI s!r1"ihI s!r2"i

p
Re&γ!r1; r2"'; (4)

where γ!r1; r2" is the CDOC of the signal and “Re” denotes the
real part. In deriving Eq. (4), we assumed that the signal field
has a fast fluctuating phase such that the first- and higher order
phase-sensitive correlation functions vanish, hϵs!r"i # 0,
hϵ%s !r1"ϵ%s !r2"i # hϵs!r1"ϵs!r2"i # 0. Importantly, this result
is valid for any classical statistical light fields, including multi-
mode laser light when only a few modes are exited, LEDs,
and random lasers among others that generate optical fields
with non-Gaussian statistics.

Hereafter, it proves convenient to introduce a normal-
ized intensity–intensity correlation function g!2"ϕ !r1; r2" #
G!2"

ϕ !r1; r2"∕&ILO!r1"ILO!r2"', which reads

g !2"ϕ !r1; r2"≃ 1$ I!r1"$ I!r2"$ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I!r1"I!r2"

p
Re&γ!r1;r2"':

(5)

Here, the normalized signal to LO intensity is introduced as
I!r" # I s!r"∕ILO!r". It is convenient to choose the LO such
that its intensity profile coincides with the signal. It then fol-
lows that I!r" # I 0 # const, where I0 is a ratio of peak inten-
sities of the signal and LO. As I 0 ≪ 1, we can infer from
Eq. (5) the simple expression for the real part of the degree
of coherence as

Re&γ!r1; r2"' ≃ &g !2"ϕ !r1; r2" − 1'∕2I 0: (6)

Thus, we can determine the real part of the CDOC of the sig-
nal by measuring the intensity–intensity correlation function of
the combined beam. In traditional methods (e.g., HBT-type
experiment), the modulus of the signal CDOC can be mea-
sured by assuming the light field obeys Gaussian statistics
[1,8,12] such that

g !2"s !r1; r2" #
hI s!r1"I s!r2"i
hI s!r1"ihI s!r2"i

# 1$ jγ!r1; r2"j2: (7)

It follows at once from Eqs. (6) and (7), which are the corner-
stone of our procedure, that both real and imaginary parts of
the CDOC can be recovered. We stress, though, that while
Eq. (6) holds for arbitrary statistical fields, Eq. (7) is limited
to the fields obeying Gaussian statistics, making our method-
ology ultimately applicable to Gaussian statistical fields.

Let us illustrate our method by determining the CDOC of
a complex Gaussian-correlated (CGC) beam. The CGC beam
(i.e., signal) is realized by performing an optical “Fourier
transform” of the Gaussian beam array with the intensity
distribution as

I!s" #
1

N

XN

n#1

exp

"!sx $ an"2 $ !sy $ bn"2

ω2
0∕2

#
; (8)

with a thin lens. Here, s # !sx ; sy" is an arbitrary coordinate on
the Fourier transform plane, N is a positive integer, and ω0 is a
beam width. an and bn are the displacements from the origin
coordinate in x and y directions, respectively. The CDOC of
the CGC beam in the source plane can be expressed as [1,8]

γ!r1; r2" #
1

λ2f 2

Z
I!s" exp

"
−
i2πs · !r1 − r2"

λf

#
d2s

#
XN

n#1

exp

$
−
!r1 − r2"2

2δ20
$

2iπ
λf

&an!x1 − x2" $ bn!y1 − y2"'
%
;

(9)

where δ0 # λf ∕!πω0" is a transverse coherent length of the
CGC beam, with f being the focal length of a lens performing
the Fourier transform. The intensity distribution of the CGC
beam in the source plane is

I s!r" # Cs exp

&
−
r2

2σ2s

'
; (10)

where σs and Cs are the beam waist size and the amplitude
parameter of the CGC beam, respectively. The Gaussian local
oscillator has the intensity distribution in the source plane as

Fig. 1. Schematic for the incoherent superposition of a PCB and a
CB. BS, beam splitter.
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ILO!r" # CLO exp

&
−

r2

2σ2LO

'
; (11)

where CLO and σLO are the amplitude parameter and the beam
waist size of LO, respectively. The amplitude parameters have
the relationship Cs $ CLO # 1. The LO phase is taken here as
ϕ # π∕2 caused by the BS reflection [20].

In the following experiment, we set N # 3, and !a1; b1",
!a2; b2", and !a3; b3" to be (0, 0), !0; 2ω0", and !2ω0; 0",
respectively. The experimental setup is shown in Fig. 2.

The experimental procedure can be divided into two parts.
Part I involved mixing the CGC beam and LO. A linearly po-
larized diode-pumped solid-state laser (DPL) light beam of
wavelength λ # 532 nm is expanded by a beam expander
(BE) and split into two components by a beam splitter (BS1).
The reflected beam was modulated by a spatial light modulator
(SLM), controlled by a personal computer (PC1), and con-
tained a phase mask. The selected Gaussian beam array
(GBA) by a circular aperture (CA) was reflected by a mirror
M 1 and focused onto a rotating ground glass disk (RGGD)
by a thin lens L1. The scattered light from the RGGD was then
collimated by a thin lens L2 and shaped by a Gaussian ampli-
tude filter (GAF), producing a CGC beam. The generated
CGC beam was mixed with the local oscillator that was trans-
mitted through BS1 and reflected by the mirror M 2 at BS2.

Part II involved the intensity and CDOC distribution mea-
surement of the CGSCM beam in the source plane. The com-
bined beam at BS2 passing through a 4f image system consisting
of a thin lens L3 (f 3 # 10 cm) was then received by a charge-
coupled device (CCD) with pixel size 4.4 μm × 4.4 μm. The
intensity distributions of the CGC, LO, and the combined beam
were captured by the CCD (each 6000 frames) and then sent to
a personal computer (PC2) and processed by the commercial
software MATLAB.

Figure 3 shows the experimental results of the CGC beam
intensity distribution in the source plane. It was obtained from
the normalized intensity distribution of the captured 6000
frames by the CCD. The corresponding Gaussian fit in
Fig. 3(b) shows the beam waist size of the CGC beam to be
σs # 0.5 mm; the beam size is fixed hereafter. The beam waist
size of the LO is adjusted by the BE and set to σLO # σs, which
we do not show here.

Figure 4 shows theoretical and experimental results for the
normalized intensity–intensity correlation function distribu-
tion of the CGC beam [Figs. 4(b-1)–4(c-1)] and the combined
beam [Figs. 4(a-2)–4(c-2)] with CLO # 0.91 in the source
plane. The coherence length is δ0 # 0.08 mm, and the refer-
ence point of the intensity–intensity correlation function is
fixed at the beam center (i.e., r2 # 0) hereafter. We can infer
from Fig. 4 that the normalized intensity–intensity correlation
function of the combined beam in the source plane is modified
upon mixing with the LO [Figs. 4(a-2)–4(c-2)] as compared to
that without the LO [Figs. 4(a–1)–4(c–1)]. This phenomenon
could be explained by analyzing Eq. (6). As CLO ≫ Cs
(i.e., I 0 ≪ 1) in the experiment, the normalized intensity–
intensity correlation function of the combined beam in the
source plane depends on the real part of the signal CDOC.

Figure 5 shows the theoretical and experimental results for
the real part [Figs. 5(a-1)–5(c-1)] and the square modulus of
the imaginary part [Figs. 5(a-2)–5(c-2)] of the CDOC of the
generated CGCSM beam in the source plane, where the cor-
responding parameters are the same as those in Fig. 4. We can
infer from Fig. 5 that the real part and the square modulus of
the imaginary part of the CDOC of the generated CGCSM
beam differ substantially. That is, the measurements of the real
and the imaginary parts have great importance and both of
them could be used for information transfer. Our experimental
results agree reasonably well with the theoretical simulations.

In summary, we proposed a method for separately measur-
ing real and imaginary parts of the complex degree of coherence
of classical light obeying Gaussian statistics. Our method

Fig. 2. Experimental setup for the superposition of the CGCSM
beam and GB and the measurement of the CDOC. DPL, diode-
pumped solid-state laser; BE, beam expander; BS1 and BS2, beam
splitters; SLM, spatial light modulator; CA, circular aperture; M 1

and M 2, reflect mirrors; L1, L2, and L3, thin lenses; RGGD, rotating
ground glass dish; GAF, Gaussian amplitude filter; CCD, charge-
coupled device; PC1 and PC2, personal computers; GB, Gaussian
beam; GBA, Gaussian beam array.

Fig. 3. Experimental results for the CGC beam intensity distribu-
tion in the source plane. (a) The contour plot, and (b) the correspond-
ing cross line with a Gaussian fit σs # 0.5 mm.

Fig. 4. Theoretical and experimental results for the normalized inten-
sity–intensity correlation function of (a-1)–(c-1) the CGC beam and
(a-2)–(c-2) the combined beam with CLO # 0.91 in the source plane.
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involves mixing a statistical field with a strong coherent local
oscillator. We illustrated the power of our method by measur-
ing the CDOC of a complex Gaussian-correlated beam. Our
method provides a convenient way to measure the CDOC of
partially coherent fields and it can find applications in image
transmission and recovery.
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Fig. 5. Theoretical and experimental results for the real part
(a-1)–(c-1) and (a-2)–(c-2) the square modulus of the imaginary part
of the CDOC of the CGC beam.
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