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Correlations in open guantum systems and associated uncertainty relations
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We study how correlations in a state of an open quantum system affect the intrinsic uncertainties of the
expectation values of an arbitrary pair of noncommuting observables. We show that for such observables, there
exist Heisenberg-type uncertainty relations that take fully into account correlations in the state of the system.
If the quantum system is in a pure state, such uncertainty relations reduce to the conventional one. We obtain
an equation for the density operator of a general state that minimizes the new uncertainty relations, and
demonstrate that in the important case of coordinate and momentum operators, the minimum-uncertainty states
are displaced squeezed thermal states.
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I. INTRODUCTION they also play a prominent role in the consideration of such a
fundamental issue as decoherence of an open quantum sys-
The conventional uncertainty relatiqR) is a corner- tem[14], as well as in the realization of lasing without in-
stone of the modern quantum theory of measurerfignand  version[15], and in studies of efficiency of quantum telepor-
consequently, is treated in most quantum mechanics textation[16]. To our knowledge, however, research aiming at
books(see, for example, Ref2]). However, contrary to the elucidating the influence of correlations in a mixed state on
widespread view, the usual “textbook” UR pertains to sepa-the structure of the associated UR, has so far been limited to
rate rather than joint measuremef$of observable#\ or B the treatment obnly one pair of observables, namely coor-
on a system in a stafe). In essence, the uncertainty relation dinate and momenturi.7].
indicates that due to intrinsic indeterminacy of the quantum |n the present paper, we consider separate measurements
state, the product of the variances of two noncommuting Obof either of the twoarbitrary noncommuting Hermitian op-

servablesA andB cannot be less than a certain value, whicheratorsA andB on a quantum system in a mixed state. We
is expressed mathematically : introduce generalized measures of the mean-square devia-

~ 9 aiov 1 ~ o 2 tions of A andB from their expectation values. These mea-
((AA)N(AB)T) =2[(YI[ABI-[¥)I" @ sures fully incorporateorrelationsin the density operator,
Here, [ ] denotes the commutator of a pair of operators, IR EE SEECCXC Y I o0 Bleen e We then
[AB]-=AB—BA, ?nd«AA)Z):(AZ)_(A)Z IS the Va”'_ utilize the generalized variances to derive the associated
ance of the operatok. It should be noted that the inequality Hejsenberg-type uncertainty relations, and we show that the
(1) is formulated for apure state. Uncertainty relations of _R's that we derive reduce to the conventional one for pure
this type were extensively studied as early as the 1931’ states. Next, we demonstrate that the explicit incorporation
There has also been a considerable interest in uncertaingy guantum coherences into the structure of the UR’s relaxes
relations associated with joint measurements of noncommuthe requirement that the minimum-uncertainty states be pure.
ing observables[5-8] as well as in the generalized |n particular, we find that in the important case of the coor-
parameter-based UR'’s that do not explicitly depend on thjinate and momentum operators, the most general minimum-
expectation value of the commuta{®@-11]. Further, a gen-  yncertainty states adisplaced squeezed thernsiates. Fur-
eralization of the Heisenberg-type UR) to open quantum ther, we compare our algebraic approach to the study of
systems was carried o[t2,13, and the nature of the states correlations in a mixed state of a quantum system with the

that minimize such a generalized UR was examined. Thesﬁhase_space formalism emp'oyed in R[af?] Fina”y, we
studies have shown that, at least when the observabtesl  note the similarity between a special case of the uncertainty

B are the coordinate and the momentum, the most generéglations and a recently obtained reciprocity inequality for
minimum-uncertainty stateustbe a pure statfl2]. partially coherent light treated classica[ly8].

Since the knowledge of the minimum-uncertainty states is
of importance for devising high-precision quantum measure-
ment schemes, the relation of the nature of such states, i.e., Il. GENERALIZED VARIANCES AND ASSOCIATED
the degree of their purity, to correlations in the state of the UNCERTAINTY RELATIONS
measured system, evidently warrants further investigation. . . . . . .
Such correlations are described by off-diagonal elements, We begin our a”a'}/S'S by introducing generalized vari-
which are sometimes referred to as quantum coherences, 8fces of the observabfethat(i) explicitly incorporate quan-
the density Operator of the System_ We stress that OffIUm coherences ar‘(ﬂi) reduce to the conventional measure
diagonal elements of the density operator are important nasf the mean-square deviation from the expectation valuf of
only in the state preparation for quantum measurements, bfior the measured system in a pure state. Let
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(AA)?)  =Tr([AA,p]2), (29 Tr(F'F)=0, (6)

and .
whereF is an arbitrary operator. Suppose that

((AA)Y?)_ =—Tr([AAp]?). (2b)

Here,[,]. stands for the anticommutator of two operators, F=[AB,p]+ TIN[AA.p]-, @)

[A,B],=AB+BA, andAA=A—(A), where(A)=Tr(Ap) .

is the expectation value of the operaforlt should be noted Where\ is any real number. We substitute ferfrom Eq.(7)
that the minus sign in front of the right-hand side of E2p) into Eq.(6) a_nd after some alggbra, |nvoIV|_ng the invariance
is necessary to ensure the nonnegativity of the variance. Fupf @ trace with respect to cyclic permutations of the opera-
ther, one can express the right-hand sides of Ez@.and  OrS, we arrive at the inequality

(2b) in terms of the eigenstates @, Ala)=ala). By a

straightforward calculation, one can show that if the system Tr([AB,p]%)—A2Tr([AA,p]?)—2iATr([A,B]_p?)=0.

is in a pure statgy) both the generalized variances are equal 8
to the wusual variance up to a numerical factor:
((AA)2)Pure= ((AA)2)PUe =2 ((h| A?| ) — (] A| )?). On making use of the definitior(®), it follows that

The two generalized variances have different physical
meaning. In order to see this, we expand Egs) and(2b)

in the basig|a)} of the eigenstates &%, assuming, for sim-

plicity, that the expectation value @ is zero. The variance
defined by Eq(2a) may then be expressed k9]

N((AA)?) +((AB)%) . +2\[Tr([A,B] p*)[=0. (9

This inequality holds regardless of the valueNoprovided
that

AN2 _ "2 |2
(47, = 2 (a+ayalpla)l” ) ITHIAB]_pDP—((AA)D)_((AB)?), =0, (10)

It follows from this definition that the right-hand side is a
generalized mean-square deviation from the expected valu
taken to be zero, of the observabfe The expression

|(a|p|a’)|? represents a generalized probability distribution,
which is not restricted to the diagonal elements;}a{s it is A
for the variance. The other generalized variance, given by thﬁj
expression

which is equivalent to the inequalitpa) that we set out to
prove. The other inequality5b), can be proven in a similar

In the limiting case when either of the two operators, say

, commutes witlp, the left-hand side of the inequalitga)

entically vanishes. It follows at once from the properties of

traces that in this limiting case, the right-hand side of in-

equality (59 is also zero. Further, when the quantum system

((AA)D_ = > (a—a")¥(alp|a’)|%, (4) is in a pure state, the UR’s that we have just established
aa’ reduce to the usual Heisenberg-type uncertainty reldfion

characterizes the effective width of the correlations betweeﬁ'owever’ the.UR,E(S) are quite different from the conven-
. . ~ . tional generalized uncertainty relatiofik3] for the quantum
any pair of eigenvalues of the observaldlein the mixed tem i ixed stat
tate of the system. It is to be also noted that if the operatosryS em In a mixed state. ;
S : The minimum-uncertainty state of the new uncertainty re-

A is simultaneously measurable wigh the density operator |ations corresponds to the case when the equality sign in

is diagonal in the eigenstates Af and the generalized vari- inequality (6) holds, i.e., when Tig'F)=0. This equation
ance, given by Eq(4), identically vanishes. We will now implies that all the eigenvalues 6f must be zero. In other

state our main result pertaining to the intrinsic spreads of a ~ . a .
P g P ds,F must be a null operator, i.e5|v)=0, for any basis

air of noncommuting observables in an open quantum sys¥O"
Fem. g pend y states{|»)}. It then follows from Eq.(7) that

Theorem. The generalized variances of any pair of noncom-

muting observables Aand B measured separately on an

open gquantum system, which is described by the density op- _ _ _ _
eratorf;, satisfy the pair of uncertainty relations This equation, which d_et_err_nl_nes the density operator_of the
most general states minimizing the new UR’s for ai-

[AB,p].+iN[AA,p]_=0. (12)

((AA)?) _((AB)?),=[Tr([A,B]_p?)I?, (59 trary pair of noncommuting operators, is another key result
of this paper. It can be concluded from Ed.1l) that the
((AB)2>_((AA)2>+>|Tr([A é]_;)z)|2_ (5b) incorporation of correlations in the quantum state into the

definition of uncertainties makes it possible foméed state
Proof. It is sufficient to prove either of the two inequalities, to be a minimum-uncertainty state of the corresponding
say, (5a). Consider the auxiliary inequality UR’s.
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I1l. MINIMUM UNCERTAINTY STATES FOR THE In Eq. (16), |, is a characteristic width of the ground-state
COORDINATE-MOMENTUM PAIR: SQUEEZED wave function of the oscillator with the frequenay, and
THERMAL STATES H,(x) is the Hermite polynomial of ordem. The resulting

expression for the matrix elements of the density operator of

We will now apply the above general results to the Im_g]e thermal state, in the coordinate representation, is

portant special case of the coordinate and momentum oper

tors x andb. In particular, we will determine the most gen- (x2+x'2
eral states of an open quantum system that minimize the <X’|p0|X>IBeXF{——2COt|’(Bw)
uncertainties of the expectation valuesxfind p. To this 0
end, we rewrite the general equatigii) for the coordinate ,
. o . XX
and momentum operators assuming, to begin with, that their ex;{— , (18)
expectation values in the minimum-uncertainty state are |§ sinh(Bw)
zero, i.e., tha{x)=0 and(p)=0. We then have
whereB is a normalization constant. On comparing Etp)
[X,pls+iu[p,p]-=0, (120 with Eq. (14), we conclude that the thermal state with

=12 tanh(Bw) and §5=13 sinh(Bw) indeed minimizes the
UR'’s in the case wheA=x andB=p.

Actually, the thermal state is not the only minimum-
uncertainty state for the coordinate-momentum pair. We will
(x'|p|x)=0. (13)  now demonstrate that all the minimum-uncertainty states are

related by a unitary transformation. To this end, we rewrite

) . o the equation for the density operator of the minimizing
A general solution to Eq13) subject to the hermiticity con-  states, satisfying Eq12), in the form

dition (x'|p|x) =(x|p|x") is

where u is a real number. Next, we convert Ed.2) to the
coordinate representation. The resulting equation is

—t—+
ax' IOX

( J d x+x’'

P 2 idup

X
(X*+x'2)  xx' —+i
— Vi Vi

287 &
) o Next, we introduce the scaled creation and annihilation op-
where A is a normalization constant, both, and 6, are  gr5t0rs by the expressions

characteristic spatial scales. Further, the positive definiteness

po+ Po =0. (19

: (14

<X’|p|X>=AeXF{—

of the density matrix imposes a constraint on the value$, of 1 |
and &,, namely, 8,> &;. On substituting fox’|p|x) from a=—| Ax+-p]|, (203
Eqg. (14) into Eqg. (13), one obtains foru the expression \/E A
Up=1/65—1155.
We will now show that the density operator, given by the ~t 1 . i.
matrix element$14), corresponds to a thermal state. For this a :E( AX=3P], (20b)

purpose, we recall that the density operator of the thermal

state in the number representation is where\ is a real positive scaling factor. On substituting for

1 x andp from Egs.(20) into Eq.(19), we obtain the equation
po=7 2 e *"In)(n]. (15

(acoshr +a' sinhr)pg+ po(a sinhr +a' coshr) =0,
Here,Z=1—e #“ is a normalization constan is an os- (21)
cillator frequency,B is the inverse temperature, where we
use units such that the Planck constardand the Boltzmann
constant are both equal to unity. One can then determine the

where

matrix elements of the density operat@b) in the coordinate Chp— 1 _
representation by making use of the explicit expressions for sinhr 2\ \Ju Mu |, (223
the oscillator wave functions in this representation viz.,
1 1/2 and
— 2/912
X|ny=| ———==] exp(—xT725HH (x/ly), (16
< | > (Znnllo\/;) F( O) n( O) ( ) _1 1
coshr = 5 WH\\/; . (22b
and by employing Mehler’'s formulg20] K
w It follows at once from Eq(19), Eq.(21), and Egs(22), that
_(x? 2 n
! F{ny (THyT)z => (z/2) Ho(X)Hn(Y). if the scaling parametex=1/\/u, then the thermal state so-
1-2° 1/iz—z n=o0 n! lution to Eq.(19) is recovered. In order to find a general class

a7 of minimizing states, one can identify, following the method
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developed in Ref[21] for the pure minimum-uncertainty The minimum-uncertainty state with th@ function repre-
states of the conventional UR, the unitary operator sented by Eq(28) is well known in quantum optics as a
squeezed thermal state. It can be produced, for instance, by

- 1 . - degenerate four-wave mixing in a cavity coupled to a ther-
S= exr{z(zaz—z* a'?)|, (23 mal reservoir in order to model relaxation proceds¥3. It
is to be also noted that there is a continuous paraméter,
which performs the squeezing transformation: which specifies the degree of decorrelation of the state due to
the interaction of the system with the environment. It is seen
SaS'=acoshr +a'e '?sinhr. (24)  from Eq.(29) that in the limiting case ag— 0, which cor-

_ responds to a zero temperature of the environment, the state
Here, the complex squeeze parametes given byz=re'?. is an ideal squeezed vacuum. Our results for the minimum-
On comparing the right-hand side of E@4) with the left-  uncertainty state can be readily generalized to the case of
hand side of Eq(21), we conclude that the expressions in thearbitrary linear combinations of coordinate and momentum,

brackets in Eq(21) can be obtained by the action 8fwith ~ Which may represent, for example, the quadratures of the
nihilation operators. Equivalently, one can apply a unitaryanalysis indicates that in this case, the minimum-uncertainty

squeezing transformation to the thermal density operator, State is a displaced squeezed thermal state, with the density
operator

A agnon
p=SpoS 29 5=8DhDS 30
Equation(25) represents a general state which minimizes the )
UR’s (5), in the special case wheh=x andB= E, Here,D is the displacement operator that shifts the thermal

To account for the statistical properties of the state giverftate by an amount equal to a nonzero expectation value of a
by the density operatd@5), we calculate the Husin® func-  Particular quadrature.
tion of such a state, defined as

IV. DISCUSSION AND SUMMARY

1
Qa)= ;<a|p| a), (26) It is instructive to compare our results with some previous
attempts to generalize the uncertainty relation to open quan-
tum systems. To our knowledge, the only investigation that

where|a) is a coherent state. Starting with the density Op_incorporates correlations in a quantum state into the structure
erator(15) of the thermal state, we apply the squeezing trans- . .
(15 PPl q g of the UR is that of Chountasis and Vourdgk?]. These

formationS and take diagonal elements of the resulting den+ ;i o5 introduced variances of the coordinate and momen-

sity operator in the coherent-state representation with thfum in an extended phase space and applied a Fourier-
help of the expressiof22], transform relationship between the Wigner and the Weyl dis-
" 1 tributions, to derive the corresponding uncertainty relations.

a It was also verified in Ref[17] that the thermal state mini-

— 2 242
nir,a)=——=exp — = +a‘t®|Hyl =—]. (2 . . .

(nlr.@) Je,n! © 2|a| “« ) ”(ZCrt) @7 mizes such UR’s. In the special case of the coordinate-
momentum pair, our UR’s reduce to the uncertainty relations

Here |r,a :§| a) is a pure squeezed state, ard derived in Ref[17], apa}rt from a normahzauon factor. H(_Jw—
=(s,/2c,)2 wherec,= coshr and s, = sinhr. Next, per- Vel our approach is not restricted to the coordinate-

forming the summation with respect to with the aid of ~Momentum pair, being applicable to any pair of arbitrary

Mehler’s formula(17), we find that noncommuting operatorA and B. Moreover, the general
algebraic approach that we have developed makes it possible
sechr %2 to define squeezing for open quantum systems, and hence, to
Q(Xq,X5) = > exp( - E '2> , identify the most general minimum-uncertainty states for the
m(1-{)\V1- P tanfrr 1=1220] coordinate-momentum pair, which turn out to be the

(28)  squeezed thermal states. We mention that there exists a for-
mal analogy between quantum mechanics of open systems
and classical optics of partially coherent light. The density
operator describing a mixed state is, in a sense, analogous to
the cross-spectral density of such light. Moreover, at least at
a qualitative level, the counterpart in classical optics of the
1 _ {sechir (299 degree of correlations in the mixed state of a quantum sys-
1+e2 2(1+¢tanhr)’ tem is the degree of spatial coherence of light, which is also
known as the spectral degree of coheretRRef. [22], Chap.
1 £ sechr 4). The question of the approprigte reciprocity re_lations,
= — ) (29b) analogous to the quantum mechanical UR'’s, for partially co-
1+e~2 2(1-{tanhr) herent light has already been addresséske Refs.

where the quadrature variables are definedkas a+ o*
and x,=i(a* — a). Further,/=e #¢, and the quadrature
variances are found to be given by the expressions

0O1=

g2
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[18,24,29). In this context, the recently obtained reciprocity for such variances. The UR’s, along with the usual uncer-
relation between the effective coherence size of a partiallyainty relations generalized to quantum systems in mixed
coherent source and the width of the angular correlations igtates[13] impose, in general, different constraints on the
the beam generated by such a soJrt#] is similar to the  spread of the values of conjugate observables, which are due
quantum mechanical UR®), specialized to the coordinate- to the fundamental indeterminacy of such a state. The possi-
momentum pair. However, the possibility of squeezing of thepjlity that there is a connection between the two sets of un-

variance of either of the two conjugate variables in the quancertainty relations for mixed states remains to be examined.
tum system has no analogy in classical optiBef. [22],

Chap. 2}.
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