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Correlations in open quantum systems and associated uncertainty relations
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We study how correlations in a state of an open quantum system affect the intrinsic uncertainties of the
expectation values of an arbitrary pair of noncommuting observables. We show that for such observables, there
exist Heisenberg-type uncertainty relations that take fully into account correlations in the state of the system.
If the quantum system is in a pure state, such uncertainty relations reduce to the conventional one. We obtain
an equation for the density operator of a general state that minimizes the new uncertainty relations, and
demonstrate that in the important case of coordinate and momentum operators, the minimum-uncertainty states
are displaced squeezed thermal states.
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I. INTRODUCTION

The conventional uncertainty relation~UR! is a corner-
stone of the modern quantum theory of measurement@1#, and
consequently, is treated in most quantum mechanics t
books~see, for example, Ref.@2#!. However, contrary to the
widespread view, the usual ‘‘textbook’’ UR pertains to sep
rate rather than joint measurements@3# of observablesÂ or B̂
on a system in a stateuc&. In essence, the uncertainty relatio
indicates that due to intrinsic indeterminacy of the quant
state, the product of the variances of two noncommuting
servables,Â andB̂ cannot be less than a certain value, whi
is expressed mathematically as@2#:

^~DÂ!2&^~DB̂!2& > 1
4 u^cu@Â,B̂#2uc&u2. ~1!

Here, @ ,#2 denotes the commutator of a pair of operato

@Â,B̂#2[ÂB̂2B̂Â, and ^(DÂ)2&5^Â2&2^Â&2 is the vari-
ance of the operatorÂ. It should be noted that the inequalit
~1! is formulated for apure state. Uncertainty relations o
this type were extensively studied as early as the 1930’s@4#.
There has also been a considerable interest in uncerta
relations associated with joint measurements of noncomm
ing observables@5–8# as well as in the generalize
parameter-based UR’s that do not explicitly depend on
expectation value of the commutator@9–11#. Further, a gen-
eralization of the Heisenberg-type UR~1! to open quantum
systems was carried out@12,13#, and the nature of the state
that minimize such a generalized UR was examined. Th
studies have shown that, at least when the observablesÂ and
B̂ are the coordinate and the momentum, the most gen
minimum-uncertainty statemustbe a pure state@12#.

Since the knowledge of the minimum-uncertainty state
of importance for devising high-precision quantum measu
ment schemes, the relation of the nature of such states,
the degree of their purity, to correlations in the state of
measured system, evidently warrants further investigat
Such correlations are described by off-diagonal eleme
which are sometimes referred to as quantum coherence
the density operator of the system. We stress that
diagonal elements of the density operator are important
only in the state preparation for quantum measurements
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they also play a prominent role in the consideration of suc
fundamental issue as decoherence of an open quantum
tem @14#, as well as in the realization of lasing without in
version@15#, and in studies of efficiency of quantum telepo
tation @16#. To our knowledge, however, research aiming
elucidating the influence of correlations in a mixed state
the structure of the associated UR, has so far been limite
the treatment ofonly one pair of observables, namely coo
dinate and momentum@17#.

In the present paper, we consider separate measurem
of either of the twoarbitrary noncommuting Hermitian op-

eratorsÂ and B̂ on a quantum system in a mixed state. W
introduce generalized measures of the mean-square d

tions of Â and B̂ from their expectation values. These me
sures fully incorporatecorrelations in the density operator
which are specified by off-diagonal elements of the latter
the Hilbert space of the appropriate observables. We t
utilize the generalized variances to derive the associa
Heisenberg-type uncertainty relations, and we show that
UR’s that we derive reduce to the conventional one for p
states. Next, we demonstrate that the explicit incorpora
of quantum coherences into the structure of the UR’s rela
the requirement that the minimum-uncertainty states be p
In particular, we find that in the important case of the co
dinate and momentum operators, the most general minim
uncertainty states aredisplaced squeezed thermalstates. Fur-
ther, we compare our algebraic approach to the study
correlations in a mixed state of a quantum system with
phase-space formalism employed in Ref.@17#. Finally, we
note the similarity between a special case of the uncerta
relations and a recently obtained reciprocity inequality
partially coherent light treated classically@18#.

II. GENERALIZED VARIANCES AND ASSOCIATED
UNCERTAINTY RELATIONS

We begin our analysis by introducing generalized va
ances of the observableÂ that~i! explicitly incorporate quan-
tum coherences and~ii ! reduce to the conventional measu
of the mean-square deviation from the expectation value oÂ
for the measured system in a pure state. Let
©2001 The American Physical Society06-1
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SERGEY A. PONOMARENKO AND EMIL WOLF PHYSICAL REVIEW A63 062106
^~DÂ!2&1[Tr~@DÂ,r̂ #1
2 !, ~2a!

and

^~DÂ!2&2 [2Tr~@DÂ,r̂ #2
2 !. ~2b!

Here, @ ,#1 stands for the anticommutator of two operato

@Â,B̂#1[ÂB̂1B̂Â, andDÂ5Â2^A&, where^A&5Tr(Âr̂)
is the expectation value of the operatorÂ. It should be noted
that the minus sign in front of the right-hand side of Eq.~2b!
is necessary to ensure the nonnegativity of the variance.
ther, one can express the right-hand sides of Eqs.~2a! and
~2b! in terms of the eigenstates ofÂ, Âua&5aua&. By a
straightforward calculation, one can show that if the syst
is in a pure stateuc& both the generalized variances are eq
to the usual variance up to a numerical fact

^(DÂ)2&2
(pure)5^(DÂ)2&1

~pure!52(^cuÂ2uc&2^cuÂuc&2).
The two generalized variances have different phys

meaning. In order to see this, we expand Eqs.~2a! and ~2b!

in the basis$ua&% of the eigenstates ofÂ, assuming, for sim-
plicity, that the expectation value ofÂ is zero. The variance
defined by Eq.~2a! may then be expressed as@19#

^~DÂ!2&15 (
a,a8

~a1a8!2u^aurua8&u2. ~3!

It follows from this definition that the right-hand side is
generalized mean-square deviation from the expected va
taken to be zero, of the observableÂ. The expression
u^aurua8&u2 represents a generalized probability distributio
which is not restricted to the diagonal elements ofr̂ as it is
for the variance. The other generalized variance, given by
expression

^~DÂ!2&2 5 (
a,a8

~a2a8!2u^aurua8&u2, ~4!

characterizes the effective width of the correlations betw
any pair of eigenvalues of the observableÂ in the mixed
state of the system. It is to be also noted that if the oper
Â is simultaneously measurable withr̂, the density operato
is diagonal in the eigenstates ofÂ, and the generalized vari
ance, given by Eq.~4!, identically vanishes. We will now
state our main result pertaining to the intrinsic spreads o
pair of noncommuting observables in an open quantum
tem.

Theorem. The generalized variances of any pair of nonc

muting observables Aˆ and B̂ measured separately on a
open quantum system, which is described by the density

erator r̂, satisfy the pair of uncertainty relations

^~DÂ!2&2^~DB̂!2&1>uTr~@Â,B̂#2r̂2!u2, ~5a!

^~DB̂!2&2^~DÂ!2&1>uTr~@Â,B̂#2r̂2!u2. ~5b!

Proof. It is sufficient to prove either of the two inequalitie
say,~5a!. Consider the auxiliary inequality
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Tr~ F̂†F̂ !>0, ~6!

whereF̂ is an arbitrary operator. Suppose that

F̂5@DB̂,r̂ #11 il@DÂ,r̂ #2 , ~7!

wherel is any real number. We substitute forF̂ from Eq.~7!
into Eq. ~6! and after some algebra, involving the invarian
of a trace with respect to cyclic permutations of the ope
tors, we arrive at the inequality

Tr~@DB̂,r̂ #1
2 !2l2Tr~@DÂ,r̂ #2

2 !22ilTr~@Â,B̂#2r̂2!>0.
~8!

On making use of the definitions~2!, it follows that

l2^~DÂ!2&21^~DB̂!2&112luTr~@Â,B̂#2r̂2!u>0. ~9!

This inequality holds regardless of the value ofl provided
that

uTr~@Â,B̂#2r̂2!u22^~DÂ!2&2^~DB̂!2&1<0, ~10!

which is equivalent to the inequality~5a! that we set out to
prove. The other inequality,~5b!, can be proven in a simila
way.

In the limiting case when either of the two operators, s
Â, commutes withr̂, the left-hand side of the inequality~5a!
identically vanishes. It follows at once from the properties
traces that in this limiting case, the right-hand side of
equality~5a! is also zero. Further, when the quantum syst
is in a pure state, the UR’s that we have just establis
reduce to the usual Heisenberg-type uncertainty relation~1!.
However, the UR’s~5! are quite different from the conven
tional generalized uncertainty relations@13# for the quantum
system in a mixed state.

The minimum-uncertainty state of the new uncertainty
lations corresponds to the case when the equality sign
inequality ~6! holds, i.e., when Tr(F̂†F̂)50. This equation
implies that all the eigenvalues ofF̂ must be zero. In other
words,F̂ must be a null operator, i.e.,F̂un&50, for any basis
states$un&%. It then follows from Eq.~7! that

@DB̂,r̂ #11 il@DÂ,r̂ #250. ~11!

This equation, which determines the density operator of
most general states minimizing the new UR’s for anarbi-
trary pair of noncommuting operators, is another key res
of this paper. It can be concluded from Eq.~11! that the
incorporation of correlations in the quantum state into
definition of uncertainties makes it possible for amixed state
to be a minimum-uncertainty state of the correspond
UR’s.
6-2



m
e
-
th

he
ar

-

ne
f

he
is

m

e

t

fo

te

r of

-
ill

are
ite

ng

op-

or

-
ss
d
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III. MINIMUM UNCERTAINTY STATES FOR THE
COORDINATE-MOMENTUM PAIR: SQUEEZED

THERMAL STATES

We will now apply the above general results to the i
portant special case of the coordinate and momentum op
tors x̂ and p̂. In particular, we will determine the most gen
eral states of an open quantum system that minimize
uncertainties of the expectation values ofx̂ and p̂. To this
end, we rewrite the general equation~11! for the coordinate
and momentum operators assuming, to begin with, that t
expectation values in the minimum-uncertainty state
zero, i.e., that̂ x&50 and^p&50. We then have

@ x̂,r̂ #11 im@ p̂,r̂ #250, ~12!

wherem is a real number. Next, we convert Eq.~12! to the
coordinate representation. The resulting equation is

S ]

]x8
1

]

]x
1

x1x8

m D ^x8urux&50. ~13!

A general solution to Eq.~13! subject to the hermiticity con
dition ^x8urux&5^xurux8& is

^x8urux&5A expF2
~x21x82 !

2d1
2

1
xx8

d2
2 G , ~14!

where A is a normalization constant, bothd1 and d2 are
characteristic spatial scales. Further, the positive definite
of the density matrix imposes a constraint on the values od1
and d2, namely,d2.d1. On substituting for̂ x8urux& from
Eq. ~14! into Eq. ~13!, one obtains form the expression
1/m51/d1

221/d2
2.

We will now show that the density operator, given by t
matrix elements~14!, corresponds to a thermal state. For th
purpose, we recall that the density operator of the ther
state in the number representation is

r̂05
1

Z (
n

e2bvnun&^nu. ~15!

Here,Z512e2bv is a normalization constant,v is an os-
cillator frequency,b is the inverse temperature, where w
use units such that the Planck constant\ and the Boltzmann
constant are both equal to unity. One can then determine
matrix elements of the density operator~15! in the coordinate
representation by making use of the explicit expressions
the oscillator wave functions in this representation viz.,

^xun&5S 1

2nn! l 0Ap
D 1/2

exp~2x2/2l 0
2!Hn~x/ l 0!, ~16!

and by employing Mehler’s formula@20#

1

A12z2
expF2xy2~x21y2!z

1/z2z G5 (
n50

`
~z/2!n

n!
Hn~x!Hn~y!.

~17!
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In Eq. ~16!, l 0 is a characteristic width of the ground-sta
wave function of the oscillator with the frequencyv, and
Hn(x) is the Hermite polynomial of ordern. The resulting
expression for the matrix elements of the density operato
the thermal state, in the coordinate representation, is

^x8ur0ux&5B expF2
~x21x82 !

2l 0
2

coth~bv!G
3expS xx8

l 0
2 sinh~bv!

D , ~18!

whereB is a normalization constant. On comparing Eq.~18!
with Eq. ~14!, we conclude that the thermal state withd1

2

5 l 0
2 tanh(bv) and d2

25 l 0
2 sinh(bv) indeed minimizes the

UR’s in the case whenÂ5 x̂ and B̂5 p̂.
Actually, the thermal state is not the only minimum

uncertainty state for the coordinate-momentum pair. We w
now demonstrate that all the minimum-uncertainty states
related by a unitary transformation. To this end, we rewr
the equation for the density operator of the minimizi
states, satisfying Eq.~12!, in the form

S x̂

Am
1 iAm p̂D r̂01 r̂0S x̂

Am
2 iAm p̂D 50. ~19!

Next, we introduce the scaled creation and annihilation
erators by the expressions

â5
1

A2
S l x̂1

i

l
p̂D , ~20a!

â†5
1

A2
S l x̂2

i

l
p̂D , ~20b!

wherel is a real positive scaling factor. On substituting f
x̂ and p̂ from Eqs.~20! into Eq.~19!, we obtain the equation

~ â coshr 1â† sinhr !r̂01 r̂0~ â sinhr 1â† coshr !50,
~21!

where

sinhr 5
1

2 S 1

lAm
2lAm D , ~22a!

and

coshr 5
1

2 S 1

lAm
1lAm D . ~22b!

It follows at once from Eq.~19!, Eq. ~21!, and Eqs.~22!, that
if the scaling parameterl51/Am, then the thermal state so
lution to Eq.~19! is recovered. In order to find a general cla
of minimizing states, one can identify, following the metho
6-3
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developed in Ref.@21# for the pure minimum-uncertainty
states of the conventional UR, the unitary operator

Ŝ5expF1

2
~zâ22z* â†2!G , ~23!

which performs the squeezing transformation:

ŜâŜ†5â coshr 1â†e2 iu sinhr . ~24!

Here, the complex squeeze parameterz is given byz5reiu.
On comparing the right-hand side of Eq.~24! with the left-
hand side of Eq.~21!, we conclude that the expressions in t
brackets in Eq.~21! can be obtained by the action ofŜ with
a real squeeze parameter, (u50), onto the creation and an
nihilation operators. Equivalently, one can apply a unita
squeezing transformation to the thermal density operator

r̂5Ŝ†r̂0Ŝ. ~25!

Equation~25! represents a general state which minimizes
UR’s ~5!, in the special case whenÂ5 x̂ and B̂5 p̂.

To account for the statistical properties of the state giv
by the density operator~25!, we calculate the HusimiQ func-
tion of such a state, defined as

Q~a!5
1

p
^aurua&, ~26!

where ua& is a coherent state. Starting with the density o
erator~15! of the thermal state, we apply the squeezing tra
formationŜ and take diagonal elements of the resulting d
sity operator in the coherent-state representation with
help of the expression@22#,

^nur ,a&5
tn

Acrn!
expS 2

1

2
uau21a2t2DHnS a

2crt
D . ~27!

Here ur ,a&5Ŝua& is a pure squeezed state, andt
5(sr /2cr)

1/2, where cr[ coshr and sr[ sinhr. Next, per-
forming the summation with respect ton with the aid of
Mehler’s formula~17!, we find that

Q~x1 ,x2!5
sechr

p~12z!A12z2 tanh2 r
expS 2 (

j 51,2

xj
2

2s j
2D ,

~28!

where the quadrature variables are defined asx15a1a*
and x25 i (a* 2a). Further, z5e2bv, and the quadrature
variances are found to be given by the expressions

s15
1

11e2r
2

z sech2 r

2~11z tanhr !
, ~29a!

s25
1

11e22r
2

z sech2 r

2~12z tanhr !
. ~29b!
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The minimum-uncertainty state with theQ function repre-
sented by Eq.~28! is well known in quantum optics as
squeezed thermal state. It can be produced, for instance
degenerate four-wave mixing in a cavity coupled to a th
mal reservoir in order to model relaxation processes@23#. It
is to be also noted that there is a continuous parametez,
which specifies the degree of decorrelation of the state du
the interaction of the system with the environment. It is se
from Eq. ~29! that in the limiting case asz→0, which cor-
responds to a zero temperature of the environment, the s
is an ideal squeezed vacuum. Our results for the minimu
uncertainty state can be readily generalized to the cas
arbitrary linear combinations of coordinate and momentu
which may represent, for example, the quadratures of
electromagnetic field in the context of quantum optics. T
analysis indicates that in this case, the minimum-uncerta
state is a displaced squeezed thermal state, with the de
operator

r̂5Ŝ†D̂†r̂0D̂Ŝ. ~30!

Here,D̂ is the displacement operator that shifts the therm
state by an amount equal to a nonzero expectation value
particular quadrature.

IV. DISCUSSION AND SUMMARY

It is instructive to compare our results with some previo
attempts to generalize the uncertainty relation to open qu
tum systems. To our knowledge, the only investigation t
incorporates correlations in a quantum state into the struc
of the UR is that of Chountasis and Vourdas@17#. These
authors introduced variances of the coordinate and mom
tum in an extended phase space and applied a Fou
transform relationship between the Wigner and the Weyl d
tributions, to derive the corresponding uncertainty relatio
It was also verified in Ref.@17# that the thermal state mini
mizes such UR’s. In the special case of the coordina
momentum pair, our UR’s reduce to the uncertainty relatio
derived in Ref.@17#, apart from a normalization factor. How
ever, our approach is not restricted to the coordina
momentum pair, being applicable to any pair of arbitra
noncommuting operatorsÂ and B̂. Moreover, the genera
algebraic approach that we have developed makes it pos
to define squeezing for open quantum systems, and henc
identify the most general minimum-uncertainty states for
coordinate-momentum pair, which turn out to be t
squeezed thermal states. We mention that there exists a
mal analogy between quantum mechanics of open syst
and classical optics of partially coherent light. The dens
operator describing a mixed state is, in a sense, analogo
the cross-spectral density of such light. Moreover, at leas
a qualitative level, the counterpart in classical optics of
degree of correlations in the mixed state of a quantum s
tem is the degree of spatial coherence of light, which is a
known as the spectral degree of coherence~Ref. @22#, Chap.
4!. The question of the appropriate reciprocity relation
analogous to the quantum mechanical UR’s, for partially
herent light has already been addressed~see Refs.
6-4
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@18,24,25#!. In this context, the recently obtained reciproc
relation between the effective coherence size of a parti
coherent source and the width of the angular correlation
the beam generated by such a source@18# is similar to the
quantum mechanical UR’s~5!, specialized to the coordinate
momentum pair. However, the possibility of squeezing of
variance of either of the two conjugate variables in the qu
tum system has no analogy in classical optics~Ref. @22#,
Chap. 21!.

To summarize, we have studied the influence of corre
tions in a quantum state of an open system on the intrin
uncertainties of the values of an arbitrary pair of nonco
muting observables. The introduction of generalized va
ances, which take such correlations fully into account,
gether with the algebraic approach, which we develop
enabled us to derive Heisenberg-type uncertainty relat
t
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for such variances. The UR’s, along with the usual unc
tainty relations generalized to quantum systems in mix
states@13# impose, in general, different constraints on t
spread of the values of conjugate observables, which are
to the fundamental indeterminacy of such a state. The po
bility that there is a connection between the two sets of
certainty relations for mixed states remains to be examin
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