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Abstract: We introduce partially coherent vector sources with periodic spatial coherence 
properties, which we term vector optical coherence lattices (VOCLs), as an extension of 
recently introduced scalar OCLs. We derive the realizability conditions and propagation 
formulae for radially polarized VOCLs (i.e., a typical kind of VOCLs). We show that radially 
polarized VOCLs display nontrivial propagation properties and generate controllable intensity 
lattices in the far zone of the source (or in the focal plane of a lens). By adjusting source 
coherence, one can obtain intensity lattices with bright or dark nodes. The latter can be 
employed to simultaneously trap multiple particles or atoms as well as in free-space optical 
communications. We also report the experimental generation of radially polarized VOCLs 
and we characterize VOCLs propagation properties. 
© 2017 Optical Society of America 
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1. Introduction 

Optical lattices with periodic intensity, polarization and phase patterns have been examined 
theoretically and generated experimentally [1–6]. They have also found numerous 
applications to atom cooling and trapping [7], ultracold quantum gas trapping [8], atomic 
clocks [9], microfluidic sorting [10], lattice light-sheet microscopy [11] and photonic crystal 
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engineering [12]. Besides the methods mentioned in [1–6], one can also generate intensity 
lattices through Tablot imaging of optical gratings because the optical gratings display 
transverse periodic properties [13]. The above mentioned optical lattices are generated by 
coherent light fields. Recently, a new kind of optical lattices named optical coherence lattices 
(OCLs) was introduced in [14, 15], where the OCLs are generated by partially coherent light 
sources with periodic coherence properties. It was shown in [14, 15] that the OCLs exhibit 
periodicity reciprocity: the initial periodic degree of coherence transfers its periodicity to the 
periodic intensity distribution on propagation in free-space. In other words, the OCLs yield 
intensity lattices with bright nodes in the far field (or in the focal plane of an imaging lens). 
This property, unique to partially coherent sources, is useful for simultaneously trapping 
multiple particles whose refractive indices are larger than that of the ambient. In the turbulent 
atmosphere, it was shown [16] that the OCLs also display the periodicity reciprocity over 
long propagation distances and they have scintillation indices lower than those of Gaussian 
beams, even though the lattices are eventually affected by the turbulence. The discovered 
periodicity reciprocity makes OCLs attractive for robust free-space optical communications 
[14–16]. More recently, experimental generation of OCLs was reported and it was shown that 
the OCLs may find applications to image transmission and optical encryption [17]. However, 
all research on OCLs has so far focused on scalar light fields. 

At the same time, polarization is a fundamental property of light fields. Depending on its 
polarization state, electromagnetic beams can be classified as uniformly polarized vector 
beams and non-uniformly polarized vector beams. Cylindrical vector beams, such as radially 
polarized and azimuthally polarized beams, are typical kinds of non-uniformly polarized 
vector beams [18]. Due to their tight focusing properties [19, 20] and self-healing potential 
[21], cylindrical vector beams have found applications to optical trapping, microscopy, 
optical data storage, lithography, proton acceleration, electron acceleration, material 
processing, plasmonic focusing, dark imaging, high-resolution metrology, free-space optical 
communication, super-resolution imaging and laser machining [18], among other venues. 
Partially coherent vector beams can be described in terms of their beam coherence-
polarization (BCP) matrices in the space-time representation [22] or their cross-spectral 
density matrices in the space-frequency representation [23]. A unified theory of coherence 
and polarization for partially coherent vector beams was developed by Wolf in 2003 [24], and 
the conditions for devising bona fide cross-spectral density matrices were introduced by Gori 
et al. in 2009 [25]. Different definitions of the degree of coherence of partially coherent 
vector beams were developed [24, 26]. Partially coherent vector beams with either uniform or 
non-uniform states of polarization (SOP) were explored theoretically and generated 
experimentally [27–35]. One of the key properties of a partially coherent vector beam SOP is 
its ability to change on propagation in free space [36]. Further, the degree of polarization was 
shown to regain its magnitude at the source over sufficiently long distance in the turbulent 
atmosphere [37, 38], making such beams attractive for free-space optical communications, 
laser radar system and remote sensing [39–41]. By adjusting the coherence width of a non-
uniformly polarized partially coherent vector beam, we can generate a Gaussian-like beam 
spot or a flat-topped beam spot or a dark hollow beam spot in the far field [32–34], which can 
come in handy for material thermal processing and for trapping a Rayleigh particle whose 
refractive index is larger or smaller than that of the ambient [34, 42]. In [35, 43], a class of 
partially coherent vector beams, partially correlated azimuthal vortices, were employed in 
illuminating an imaging system. It was discovered that the image contrast can be thereby 
improved, which carries potential for metrology, microscopy, and lithography. 

The coherence properties of previously studied vector beams display no periodicity at the 
source. In this work, we propose partially coherent vector beams with periodic spatial 
coherence properties, vector optical coherence lattices (VOCLs) as a natural extension of 
recently introduced scalar optical coherence lattices. The most interesting property of VOCLs 
is that the initial single radially polarized beam spot evolves into multiple radially polarized 
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beam spots with bright or dark beam profiles in the far zone of the source (or in the focal 
plane of a lens), in other words, the VOCLs generate intensity lattices with bright or dark 
nodes depending on the magnitude of a controlled source coherence parameter. The scalar 
OCLs in our previous papers can only generate intensity lattices with bright nodes [14–17]. 
The introduced VOCLs are expected to be useful for simultaneous trapping of multiple 
particles or atoms and for free-space optical communications. 

2. Theoretical models for vector optical coherence lattices and realizability 
conditions 

In this section, we will introduce a theoretical model for VOCLs and discuss their 
realizability conditions. The degree of coherence of scalar OCLs can be expressed as [14, 17] 

 ( )
( )

( )1 1 2

1 2 0 1 2
1 1 2

J / 22
, exp .

/ 2

M

m
m

i
M

δ
μ

δ=

−
= ⋅ −  −


r r

r r V r r
r r

 (1) 

Here δ  and 0mV  are coherence and phase parameters, respectively. One can synthetize scalar 

OCLs through, for instance, a superposition of multiple Schell-model beams with prescribed 
degrees of coherence [17]. 

Consider a BCP matrix ( )1 2
ˆ ,Γ r r  of the source, defined as [22] 

 ( ) ( ) ( ) ( )*
1 2 1 2, , , , .E E x yαβ α β α βΓ = =r r r r    (2) 

Here the angle brackets denote ensemble averaging and ( )1 1 1,x y≡r and ( )2 2 2,x y≡r are 

transverse position vectors in the source plane; ( )Eα r  is a fluctuating electric field 

component along the α  axis at point r . 
To be a bona fide BCP matrix, the elements of the BCP matrix can be expressed as [25] 

 ( ) ( ) ( ) ( )* 2
1 2 1 2, , , d ,P H Hαβ αβ α βΓ = r r v r v r v v  (3) 

where ( ),x yv v≡v , Hα  is an arbitrary kernel, ( )Pαβ v are the elements of the non-

negative definite matrix P̂ that satisfy the following constraints 

 ( ) ( ) ( ) ( ) 2
0, 0.xx yy xyP P P Pαα ≥≥ −v v v v     (4) 

To obtain VOCLs, we define Hα  and Pαβ  as follows 
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Here Hα  can be regarded as a transfer function of an optical path consisting of free space of 

distance f, a thin lens with the focal length f and a spatial filter with a transmission functionTα

. Further, λ  is the wavelength of the light field. ( )Pαβ v  can be regarded as a superposition of 

multiple circ functions with a radius aαβ  and off-axis displacements ( ),mn md nd=v ; d

denotes the separation between adjacent circ functions, M and N stand for the numbers of the 

2 2×

2 2×
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circ functions along x and y directions, respectively. ( )expB B iαβ αβ αβφ=  are the correlation 

coefficients between the field components Eα  and Eβ . 

Substituting from Eqs. (5) and (6) into Eq. (3), we obtain the elements of the BCP matrix 
of VOCLs as 

 ( ) ( )*
1 2 0 1 2, , ,C T Tαβ α β αβγΓ =r r r r  (7) 

where 0C  is a constant, ( )1 2,αβγ r r  represent the correlation functions given by 
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Here 0 2f kaαβ αβδ = are referred to as coherence parameters. Comparing Eqs. (1) and (8), 

we infer that the expressions of the correlation functions of VOCLs are similar to the 
expression of the degree of coherence of scalar OCLs. 

The VOCL SOP is closely related toTα . If we set 
2

2
= exp , ( , )

4 s
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r
 with Aα  

and sw  being a constant and the beam width, respectively, VOCLs exhibit uniform SOP (i.e., 

the state of polarization of any point in the source plane is the same) and are called uniformly 

polarized VOCLs. If we set 
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, VOCLs exhibit non-uniform SOP (radial or azimuthal polarization) 

and are termed radially or azimuthally polarized VOCLs. 
Hereafter, we mainly focus on radially polarized VOCLs, which can be readily generated 

in the laboratory. First, we discuss the realizability conditions. To be a physically realizable 
partially coherent vector beam, it is known that the BCP matrix of VOCLs should be quasi-
Hermitian [25], namely ( ) ( )*

1 2 2 1, ,αβ βαΓ = Γr r r r . To meet this requirement, the following 

conditions should be satisfied 

 ( ) ( ) 0 01, 0, , 1, , , , .xy yx xy yx xy yxB B B Bαβ αβ αβφ α β α β φ φ δ δ= = = ≤ ≠ = = =       (9) 

To check the non-negativity conditions, substituting from Eq. (6) into Eq. (4), we obtain 
the following inequality 
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Applying the equation ( ) ( ) ( )( )circ circ circ min ,a b a b× =r r r , it is not difficult to derive 

the following inequality from Eq. (10) 

 ( )min , .xy xx yya a a≤  (11) 

Equation (11) is equivalent to the following inequality 

 ( )0 0 0max , .xy xx yyδ δ δ≥  (12) 
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To realize radially polarized VOCLs, two additional conditions should be imposed: (a) 
any point in the source plane is linearly polarized, (b) the orientation angle of the polarization 
at any point in the source plane should satisfy ( ) ( ), arctanx y y xθ = . It is known that the 

BCP matrix of a partially coherent vector beam can be represented as a sum of the BCP 
matrix of a completely polarized beam and the BCP matrix of a completely unpolarized beam 
[23, 36]. The SOP of the completely polarized beam can be characterized by the polarization 
ellipse, with the major and minor semi-axes of the polarization ellipse ( )1A r  and ( )2A r , the 

degree of ellipticity ( )ε r and the orientation angle ( )θ r related with the elements of the BCP 

matrix as [23, 36] 

 ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
1 2

2 2 2 2

1,2

1
, , 4 , , , 4Re , ,

2
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r r r r r r r r r r r r r (13) 
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r r
r

r r r r
 (15) 

To satisfy the additional conditions (a) and (b), substituting the elements of the BCP matrix of 
radially polarized VOCLs into Eqs. (13)-(15), we obtain the equalities 

 0 0 0 0 01, .xy yx xx yy xy yxB B δ δ δ δ δ= = = = = =  (16) 

Equations (9), (12) and (16) are the realizability conditions for radially polarized VOCLs. 
In this work, we set 1x yA A= = . By applying Eq. (16), we find the correlation functions 

of the radially polarized VOCLs satisfy the following equalities 

 ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, , , , .xx yy xy yxγ γ γ γ= = =r r r r r r r r  (17) 

The electromagnetic degree of coherence of radially polarized VOCLs is defined as [26] 
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2

1 2,2
1 2

1 1 2 2,

,
, .

, ,

αβα β

αα ββα β

μ
Γ

=
Γ Γ
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
r r

r r
r r r r

 (18) 

Substituting from Eqs. (7) and (17) into Eq. (18), we obtain 

 ( ) ( ) ( )2 2
1 2 1 2, , , , .x yαβμ γ α β= =r r r r   (19) 

It follows from Eq. (19) that the degree of coherence of the radially polarized VOCLs and the 
correlation functions are the same. To save space, we only display theoretical and 
experimental results for the degree of coherence ( )2

1 2,μ r r  hereafter. 
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Fig. 1. Density plot of the square of the the degree of coherence ( )2
1 1, ,1mm,1mmx yμ  of 

radially polarized VOCLs for different values of M and N with  and  in 
the source plane. 

Figure 1 shows the density plot of the square of the degree of coherence 

( )2
1 1, ,1mm,1mmx yμ of radially polarized VOCLs for different values of M and N. We see 

from Fig. 1 that the degree of coherence of radially polarized VOCLs does display a lattices-
like behavior when M>1 and N>1, and the lattice structure becomes more complex as the 
magnitudes of M and N increase. 

3. Propagation properties of radially polarized vector optical coherence lattices 

In this section, we will derive the analytical propagation formulae for radially polarized 
VOCLs and explore their propagation properties in free space numerically. The BCP matrix 
of a partially coherent vector beam passing through a stigmatic ABCD optical system can be 
expressed using the so-called generalized Collins formula as [44] 
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where ( )1 1 1,x yρ ρ≡ρ and ( )2 2 2,x yρ ρ≡ρ  are transverse position vectors in the receiver 

plane, 2k π λ= is the wavenumber; A, B, C, and D denote optical system transfer matrix 

elements. 
Substituting the elements of BCP matrix of radially polarized VOCLs in the source plane 

into Eq. (20), we obtain (after integration) the following expressions for the elements of the 
BCP matrix in the receiver plane 
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 ( ) ( )*
1 2 2 1, , ,yx xyΓ = Γρ ρ ρ ρ  (24) 

where ( ) ( ) ( )1 2 1 22 , , ,s sx sy d dx dyρ ρ ρ ρ= + ≡ = − ≡ρ ρ ρ ρ ρ ρ , 2 2 2 44 sA B k wΔ = + , and 
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 × − − − +    Δ    

(25) 

Here tH denotes a Hermite polynomial of order t. 

The average intensity of radially polarized VOCLs is obtained as [22, 23] 

 ( ) ( ) ( ) ( ) ( ), , .xx yy x yI I I= Γ + Γ = +ρ ρ ρ ρ ρ ρ ρ  (26) 

Applying Eqs. (13)-(15) and (21)-(26), we can study the propagation properties (e.g., average 
intensity and SOP) of radially polarized VOCLs in free space numerically by setting the 
elements of the transfer matrix of free space as 1, , 0, 1A B z C D= = = =   . We can study the 
focusing properties of radially polarized VOCLs focused by a thin lens with focal length f by 
setting 1 / , , 1/ , 0,A z f B f C f D= − = = − =   Here we assumed the distances from the source 

plane to the thin lens and from the thin lens to the receiver plane to be f and z, respectively. 
We note that the beam parameters in the far field and the focal plane are the same. 

We now proceed to numerically study propagation properties of radially polarized VOCLs 
in free space. To this end, we set 0.4mm, =1mm a 5n 32.8nd msw d λ ==    . We calculate in 

Figs. 2-4 the density plot of the normalized intensity distribution ( ) ( )max/I Iρ ρ , the 

corresponding components ( ) ( )max/x yI Iρ ρ , ( ) ( )max/y yI Iρ ρ , and the radially polarized 

VOCLs SOP distribution at several propagation distances in free space for different values of 
the coherence parameter 0δ with M = N = 3. We infer from Figs. 2-4 that the beams display 

instructive propagation features in free space. In particular, dark hollow beam profiles at the 
source gradually evolve into lattice distributions on propagation, implying that the degree of 
coherence transfers its periodicity to beam intensity distributions. The intensity lattices in the 
far field are controlled by the initial coherence parameter 0δ . Thus, we can obtain intensity 

lattices with dark nodes (i.e., dark hollow beam arrays) when the coherence parameter 0δ is 

large (see Fig. 2), and we can obtain intensity lattices with bright nodes (i.e., flat-topped or 
Gaussian-like beam arrays) as we decrease the coherence parameter 0δ  (see Figs. 3 and 4). In 

addition, we deduce from Figs. 2-4 that the radially polarized VOCLs SOP varies on 
propagation, and a single radial polarized beam spot at the source evolves into multiple 
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Fig. 4. Density plot of the normalized intensity distribution ( ) ( )max/I Iρ ρ , the 

corresponding components ( ) ( )max/x yI Iρ ρ , ( ) ( )max/y yI Iρ ρ , and the distribution of 

the SOP of radially polarized VOCLs at several propagation distances in free space with M = 

N = 3 and 0 0.32mmδ = . 

 

Fig. 5. Density plot of the normalized intensity distribution ( ) ( )max/I Iρ ρ  of radially 

polarized VOCLs at 10kmz = in free space for different values of M and N with 0 =3mmδ
. 

To explore the effect of the parameters M and N on the propagation properties of radially 
polarized VOCLs, we calculate in Fig. 5 their normalized intensity distribution ( ) ( )max/I Iρ ρ  

at 10kmz = in free space for different values of M and N with 0 =3mmδ , and we find that the 
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number of dark cores equals to M N× . Numerical results (not shown here) also show that the 
initial parameter d only affects the separation of the dark or solid cores in the far-field lattices 
and doesn’t affect the SOP of each core. The intensity periodicity in the focal plane of a lens 
(or in the far zone of the source) in this work is caused by the spatial coherence periodicity in 
the transverse plane of the source, and this periodicity reciprocity is specific to partially 
coherent sources. Thus, one can modulate the distribution of the intensity lattices in the far 
field (or in the focal plane) conveniently through varying its initial coherence properties, 
which will be useful for particle trapping, e.g., the obtained intensity lattices with solid cores 
or dark cores in the focal plane can be used to simultaneously trap multiple particles whose 
refractive indices are larger or smaller than that of the ambient. The obtained intensity lattices 
with dark cores in the focal plane can also be utilized for simultaneous trapping of multiple 
atoms if the light field is blue-detuned. Furthermore, it is known that both scalar OCLs and 
radially polarized beams have advantage over Gaussian beams for mitigating the effect of 
atmospheric turbulence [16, 41]. One may expect to further mitigate the effect of atmospheric 
turbulence using radially polarized VOCLs, which will be useful in free-space optical 
communications. In our previous papers [14–17], the proposed scalar OCLs do not carry 
phase vortices. Thus, they generate intensity lattices with only bright nodes in the far field. In 
principle, one may expect to generate intensity lattices with dark nodes from scalar OLCs 
with phase vortices. In any case, our work clearly shows that manipulating coherence 
properties of a radially polarized beam provides a novel way to produce far-zone intensity 
lattices with bright or dark nodes. 

4. Experimental generation of radially polarized vector optical coherence 
lattices 

In this section, we report the experimental generation and characterization of radially 
polarized VOCLs. We employ a radial polarization converter (RPC) to convert linearly 
polarized VOCLs into radially polarized VOCLs. Figure 6 shows our experimental setup for 
generating radially polarized VOCLs and measuring its degree of coherence and focused 
intensity. In our experiment, a laser beam emitted by an Nd:YAG laser ( 532nmλ = ) first 
passes through a linear polarizer and a beam expander, followed by an amplitude mask (AM), 
which is used to modulate the intensity distribution of the incident beam. Here the AM is a
M N× circular aperture array; a is the radius of each aperture and d the separation between 
adjacent apertures. The modulated beam from the AM illuminates a rotating ground-glass 
disk (RGGD), producing an incoherent beam with a prescribed intensity distribution. Here the 
speed of the RGGD is controlled by a motion controller. Having passed through a thin lens L2 
with the focal length 1 25cmf = and the Gaussian amplitude filter (GAF), the incoherent beam 

from the RGGD transforms into linearly polarized VOCLs [17]. We then convert it into a 
radially polarized VOCLs by the RPC. The coherence parameter of the generated beam is 

controlled by varying the radius of the aperture through the relation 0 / 2f kaδ = . The 

experimental setup for generating linearly polarized VOCLs is the same as that reported in 
[17], and the key point for generating radially polarized VOCLs in our experiment is the RPC 
use. 
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Fig. 6. Experimental setup for generating radially polarized VOCLs, measuring the degree of 
coherence and the focused intensity. Laser, Nd: YAG laser; LP, linear polarizer; BE, beam 
expander; AM, amplitude mask; L1, L2 and L3, thin lenses; RGGD, rotating ground-glass disk; 
MC, motion controller; GAF, Gaussian amplitude filter; RPC, radial polarization converter; 
BS, beam splitter; CCD, charge-coupled device; BPA, beam profile analyzer; PC, personal 
computer. 

To measure the degree of coherence and the focused intensity of the generated radially 
polarized VOCLs, we use a beam splitter (BS) to split the generated beam into two beams. 
The transmitted beam from the BS passes through the thin lens L2 with the focal length

2 15cmf = arriving at a charge-coupled device (CCD). Both distances from RPC to L2 and 

from L2 to CCD are 22 f  (i.e., 2f imaging system) such that the VOCLs degree of coherence in 

the CCD plane is the same as that in the source plane (just behind the RPC). Here the CCD is 
used to measure the modulus of the VOCLs degree of coherence. A detailed measurement 
protocol can be found in [33]. The beam reflected from the BS is then transmitted through a 
thin lens L3 with the focal length 3 15cmf = . The resulting beam then arrives at the beam 

profile analyzer (BPA), which is used to measure the focused intensity distribution. The 
distances from the BPA to L3 and from L3 to BPA are 3f and z, respectively. The elements of 

the transfer matrix of the optical system between the RPC and BPA are

3 3 31 / , , 1/ , 0A z f B f C f D= − = = − =   . The components of the focused intensity xI  and yI  

can be measured by adding a linear polarizer between L3 and BPA. 

 

Fig. 7. Experimental results of the squared modulus of the degree of coherence 

( ) 2

1 1, ,1mm,1mmx yμ of the generated radially polarized VOCLs just behind the RPC 

with 0 =0.37mmδ and for different values of M and N, (a) 2M N= = , (b)

3M N= = , (c) 5M N= = . 

1mmd =

                                                                                                     Vol. 25, No. 9 | 1 May 2017 | OPTICS EXPRESS 9883 



 

Fig. 8. Experimental results of the intensity distribution of the generated radially polarized 

VOCLs with 03, 0.37mmM N δ= = = and 1mmd =  focused by the thin lens L3 with 

focal length 3 15cmf = and its corresponding components xI and yI at several propagation 

distances. 

 

Fig. 9. Experimental results of the intensity distribution of the generated radially polarized 

VOCLs with 3M N= =  and 1mmd = focused by the thin lens L3 with focal length 

3 15cmf = in the focal plane for different values of the coherence parameter, (a) 

0 0.6mmδ = , (b) 0 0.4mmδ = , (c) 0 0.37mmδ = . 

Figure 7 shows our experimental results for the squared modulus of the radially polarized 

VOCLs degree of coherence ( ) 2

1 1, ,1mm,1mmx yμ just behind the RPC with 0 =0.37mmδ and

1mmd = for different values of M and N. One finds that the exhibited degree of coherence of 
manifests a lattice-like behavior and the lattice structure becomes progressively more 
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complex as magnitudes of M and N increase. Figure 8 shows our experimental results for the 

intensity distribution and corresponding components xI and of the generated radially 

polarized VOCLs with 03, 0.37mmM N δ= = =  and 1mmd =  focused by the lens L3 with 

3 15cmf =  at several propagation distances. Figure 9 shows our experimental results for the 

VOCLs intensity distribution with 3M N= =  and 1mmd = in the focal plane for different 
values of the coherence parameter 0δ . One infers from Figs. 8 and 9 that a single source beam 

evolves into an intensity lattice in the focal plane (or the far field), and one can obtain lattices 
with bright or dark nodes by varying the source coherence parameter. Furthermore, each 
bright or dark node of the lattice features radial polarization as expected. Our experimental 
results are consistent with our theoretical predictions. 

5. Summary 

We have introduced vector optical coherence lattices as a natural extension of recently 
introduced scalar OCLs, and we have explored the propagation properties of radially 
polarized VOCLs as a numerical example. In contrast with the scalar OCLs, which generate 
intensity lattices with bright nodes in the far zone of the source, the radially polarized VOCLs 
can generate intensity lattices with bright or dark nodes depending on the magnitude of the 
source coherence parameter. In addition, we have reported the experimental generation of 
radially polarized VOCLs and characterized their focusing properties. Our experimental 
results verify our theoretical predictions. Engineering spatial coherence properties of vector 
beams paves a way for manipulating their propagation properties and for beam shaping. 
These tools can be useful for trapping multiple particles whose refractive indices are larger or 
smaller than that of their surroundings, for simultaneous multiple atom trapping and for free-
space optical communications. 
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