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We explore theoretically and numerically extreme event excitation in stimulated Raman scattering in gases. We
consider gas-filled hollow-core photonic crystal fibers as a particular system realization. We show that moderate
amplitude pump fluctuations obeying Gaussian statistics lead to the emergence of heavy-tailed non-Gaussian
statistics as coherent seed Stokes pulses are amplified on propagation along the fiber. We reveal the crucial role that
coherent memory effects play in causing non-Gaussian statistics of the system. We discover that extreme events
can occur even at the initial stage of stimulated Raman scattering when one can neglect energy depletion of an
intense, strongly fluctuating Gaussian pump source. Our analytical results in the undepleted pump approximation
explicitly illustrate power-law probability density generation as the input pump noise is transferred to the output

Stokes pulses.

DOI: 10.1103/PhysRevA.96.043817

I. INTRODUCTION

Rogue waves were originally observed as giant-amplitude
waves occurring in high seas more frequently than predicted
by Gaussian statistics [1-3]. The concept has subsequently
been extended from oceanography to other areas of physics
to describe waves of enormous amplitudes or, in general,
extreme statistical events obeying heavy-tailed probability
distributions [4]. Optics has proven to be an especially fertile
ground for extreme event and, in particular, optical rogue wave
(ORW) exploration [5,6]. To date, ORWs have been discovered
theoretically and/or experimentally in supercontinuum gener-
ating optical fibers [7-9], optical cavities [10,11], passively
mode-locked fiber lasers [12—14], erbium-doped fiber systems
[15], Raman fiber amplifiers [16,17], spatiotemporal structures
and laser filamentation [18-20], parametric processes [21],
stimulated Raman scattering (SRS) [22], and even linear light
propagation inside multimode fibers [23].

As ORWs are inherently statistical structures, their uni-
versal statistical signature is encapsulated in heavy-tailed
non-Gaussian statistics of their amplitudes and/or powers. The
non-Gaussian statistics emergence in nonlinear media has been
a central theme of the burgeoning field of nonlinear statistical
optics [24]. Specifically, non-Gaussian statistics generation
and ORW excitation with a source field comprised of a
coherent (cw) condensate component mixed with Gaussian
noise has been extensively examined numerically [25-31]
and experimentally [29,30] within the framework of the
one-dimensional (1D) nonlinear Schrédinger equation (NLSE)
[32]. The particulars of system statistics were shown to be
very sensitive to initial conditions, strongly depending on the
ratio of the condensate to random component amplitudes and
the coherence time of the source [25,26,31]. Recently, the
generation of highly non-Gaussian, heavy-tailed probability
distributions has been numerically discovered and explored in
SRS [22].

The two models just mentioned differ profoundly in many
respects. While the first encompasses a class of weakly
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nonlinear wave systems with instantaneous response (no
memory), governed by the integrable 1D NLSE, the second
features a strong nonlinearity, long memory, and is, in general,
nonintegrable. In this context, it is instructive to explore the
role of coherent memory in causing non-Gaussian statistics
of nonlinear systems. Stimulated Raman scattering appears
to be a suitable candidate to address this question because
its coherent memory is controlled by relative magnitudes
of a characteristic SRS interaction and the Raman medium
relaxation times. In the limit of an infinitely long Raman
relaxation time, the system has extremely long memory and
the SRS equations are integrable [33,34]. Another fundamental
issue concerns the source noise modeling in rogue-wave-
generating systems.

In our previous work on statistical SRS [22], we exam-
ined the case of noisy Stokes input pulses, amplified by a
coherent pump in a gas-filled hollow-core photonic crystal
fiber (HCPCF). In this work we study the same system
under the condition that seed Stokes pulses are perfectly
coherent, but pump pulses carry fluctuations obeying thermal
statistics. This type of noisy pump can be implemented with
amplitude-modulated statistically stationary sources or with
multimode lasers operating at a large number of uncorrelated
modes, yielding thermal-like source statistics [35]. We show,
in particular, that SRS with a noisy pump is conducive
to non-Gaussian statistics generation. We demonstrate that
the Stokes pulse power probability density function (PDF)
acquires a long tail at the fiber exit. The PDF tail extent
strongly increases as the system approaches the long-memory
integrability limit. In sharp contrast to the previously studied
SRS with noisy input Stokes pulses, the Stokes pulse statistics
is virtually unaffected by the source coherence time. We
examine separately the Stokes pulse area PDF behavior in
the undepleted pump approximation regime. We analytically
demonstrate that the PDF exhibits powerlike behavior, failing
to attain finite moments over fairly short propagation distances.
This behavior points to the feasibility of ORW excitation over
remarkably short distances in this SRS regime. We stress that
this conclusion is independent of the initial Stokes pulse profile
because our analytical theory gives a universal PDF in the
undepleted pump approximation.
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This work is organized as follows. In the next section we
introduce our theoretical model, including key dimensionless
parameters describing the SRS physics. We formulate the
statistical ensemble of fluctuating pump pulses in Sec. III.
We then present our analytical theory in the undepleted pump
approximation in Sec. IV. Next we present the results of our
numerical simulations in Sec. V. Finally, we summarize our
findings in Sec. VI.

II. THEORETICAL MODEL AND KEY
DIMENSIONLESS PARAMETERS

We consider stimulated Raman scattering in a gas sample
of molecular hydrogen, filling the core of a HCPCF. The fiber
is assumed to be designed such that only the pump and the first
Stokes modes lie within the fiber transparency window. In the
usual weak excitation limit, the governing SRS equations in the
copropagating geometry can be written in the dimensionless
variables as [22]

02E, = iko&,, (D
32E = ik 'o*E,, 2)

and
dro = —Lo +i&,E;. 3)

Here we introduced dimensionless pump and Stokes pulse
amplitudes &£, and &; the distance and time are scaled to the
characteristic SRS interaction length and time, respectively,
Z =z/Lsgs and T = 1/ Tsgs, Where T =1t — z/v, is a time
coordinate in the reference frame moving with the pulse group
velocity v,.

The characteristic SRS interaction length and time scales

are defined as
2¢€0c npng
Lsgs = ( ) [—L—= 4
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and

Here w, s and n, ¢ are the carrier frequencies and refractive
indices of the pump and Stokes pulses, respectively, N is a
medium density, (/o) is a peak average pump intensity at the
source, the angular brackets denoting ensemble averaging, and
Teff = % Zi #% is a Raman transition dipole matrix
element at the exact Raman resonance [36,37].

Further, we introduced « = ,/wpng/wsn, and a coherent
memory parameter I". The latter, defined as

[' = y Tsgs, (6)

where y is a medium dipole phase relaxation rate, determines
the extent of system memory and the system proximity to
the integrability limit. Indeed, whenever I' < 1, the SRS is
highly transient with an extremely long memory time and its
governing equations approach the mathematical integrability
limit I" = 0, first discussed in Refs. [33,34]. Thus, I" is a
key dimensionless parameter of the system as its magnitude
distinguishes quasi-cw, I' > 1, from transient, I' < 1, SRS
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regimes. While SRS in the former regime has a relatively
short memory, it is described by nearly integrable equations
with long memory in the transient regime.

We stress that the magnitude of I demarcates the boundary
between quasi-cw and transient SRS regimes in the nonlinear
domain where pump depletion is no longer negligible. One
should then exercise caution employing the usual rule-of-
thumb criterion classifying SRS with pump pulses much
shorter than the Raman relaxation time as transient [38]. The
latter criterion, based on quantum SRS theory in the undepleted
pump approximation [39], can prove too restrictive in the
nonlinear domain. Indeed, coherent oscillations of pump and
Stokes pulse profiles, which are unambiguous signatures of
the transient dynamics, have been vividly displayed in the
recent SRS experiments with pulses as long as or even longer
than the Raman relaxation time [40]. A typical period of such
oscillations in Ref. [40] was of the order of Tsgs < ¥y~ !,
implying that I" < 1.

III. INPUT PUMP AND STOKES PULSES AND
STATISTICAL ENSEMBLE FORMULATION

We consider a pump source pulse composed of a coherent
Gaussian and a random component such that

E)(T,0) = e~ T=T0212 L AE(T), (7

where 7 is a (dimensionless) pulse peak time. Such a
source pulse can be experimentally realized by coherently
combining a Gaussian pulse with a partially coherent one at
a beam splitter, for example. The partially coherent (random)
component can be generated by time modulating a statistically
stationary source employing an electro-optical modulator,
operating on the basis of either a linear [41] or a quadratic
[42] electro-optical effect. All this is readily achievable in
the nanosecond pulse range, adequate for SRS in gas-filled
HCPCFs. The input Stokes pulse field reads

EAT,0) = /nf’_PS e*(TfTo)2/2T3’ (8)
ns P,

where P, ; are peak powers of the (coherent components of)
pump and Stokes pulses and ., ; are the refractive indices at the
pump w,, and Stokes w; frequencies, respectively. Further, we
assume the pump and Stokes pulses to have the same duration
(in dimensionless units) 7, at the source. Such a Stokes
source can be produced in a separate fiber using the pump
coherent component and quantum noise as inputs. A coherent
macroscopic Stokes pulse is then formed as quantum noise is
“cleaned up” [43]. This Stokes input can then be transported
back into the original fiber to study ORW formation in the
amplification regime of SRS.

We express the mutual intensity of the random component
A&, using a celebrated Gaussian Schell model (GSM) of sta-
tistical optics [44]. The GSM presumes that both the intensity
and the temporal degree of coherence of the fluctuating part
have Gaussian profiles. We assume, for simplicity, that the
fluctuating and coherent components have the same width 7,
at the source. The mutual intensity of the random component,
defined as

I'(T),T»,0) = (AE;(Tl,O)AEP(Tz,O)), ©)]
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can then be written as

AP T, — T 2 T — T 2
F(T],TQ,O) = ( P P)exp |:_( 1 0) 2;2( 2 0) ]
e *

2
(T — T ] (10)

272

X exp |:—
(&

Here AP,/ P), is aratio of the random to coherent component
peak powers and T, is a coherence time of the random
component. It follows from Eq. (10) that the correlation
spectrum of the GSM is also Gaussian. The GSM is a generic
statistical source model, widely used in statistical optics [44].
For instance, a Gaussian correlation spectrum was shown to
better approximate statistical properties of supercontinuum
sources than does another commonly used model featuring
a one-photon-per-mode spectrum [45].

We can now represent the random component of the source
using the Karhunen-Loeve expansion [46,47]

AEHNT.0) = cutu(T), (11)

where the random coefficients {c,} are statistically orthogonal
such that

(C:;Cm> = )Lnamns (12)
and the coherent modes are orthonormal, implying that
—00

The mutual coherence function is then represented as a Mercer-
type series in coherent modes as [44]

D11, T5,0) = Y ¥ (T (T). (14)

The coherent modes {y,} are determined by solving the
Fredholm integral equation

/ AT\T(T, T2 00 (T)) = ¥n(T). (1)

o0

In the GSM case, Eq. (15) can be analytically solved and all
modes and the eigenvalues {1, } determined such that [44]

2% 1/4 1 1/2 ,
Yn(T) = (—) ( ) H,[\/26(T — Ty)le $T=10",
T 2np!

(16)
where H,(x) is a Hermite polynomial of the order n and
AP, "
xn:ﬁn< ”) @+5F" (17)
Pp ((Y+}3 +€;)n+l
Here we introduced the notation
1 B : (18)
o = —, = —F,
2T? 217

and

£ =/a?+2ap. (19)

We note that the mode powers (17) are normalized such that
they add up to the total power of the random component
(relative to the coherent component power).
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To complete the ensemble description, we must specify
the random amplitude statistics to any order such that it is
consistent with Eq. (12). Expressing the complex random
amplitudes {c,} in the polar form as

en = Vine', (20)

we stipulate that the complex amplitudes be independent
random variables; the phases are assumed to be uniformly
distributed in the interval —7 < ¢, < w, while the {i,} obey
the exponential distribution such that

Plin) = L e~ i, > 0. 1)
)\'l'l

If coherent modes correspond to natural oscillation modes of
the source, such a source can be interpreted as a multimode
laser source with each mode having a random phase and a
strongly fluctuating power. The overall field at the source is a
superposition of uncorrelated mode fields. As each mode obeys
Gaussian statistics, the overall source PDF is guaranteed to be
Gaussian (thermal-like) for any source coherence time 7, [22].

IV. UNDEPLETED PUMP APPROXIMATION

We first focus on the case of a very long, high-power pump
pulse ¢, > t; and P, >> Py such that the pump pulse can be
treated as a plane wave. In the undepleted pump approximation
(UPA), £, = const and the SRS equations linearize. They can
then be solved by a Fourier transform technique. Introducing
a Fourier transform of the Stokes field

SY(Q,Z) = /

—00

o]

dT e T E(T, 2), (22)

where € is a frequency shift from the Stokes carrier and the
Stokes pulse area,

oo
A(Z) :/ dT &(T,2), (23)
—00
we can conclude at once that the latter is a component of the
former at the carrier frequency, i.e.,

Ay(Z) = £,(0,2). (24)

This observation allows us to quickly solve linearized equa-
tions (1)—(3) to obtain, for the area the expression,

&P Z
A(Z) = Agoexp ('L> (25)
kT
The area describes a universal dynamics of Stokes pulses:
Whatever the initial pulse shape, the area grows exponentially.
Next we can determine the PDF of the area magnitude
under the UPA. We assume a strong coherent pump with small
intensity fluctuations such that the (dimensionless) intensity
can be written as

17 =140, —(i,) = 1+i, (i,)<1l (26)
This model is in sync with our general ensemble construct of

Sec. III. The intensity fluctuations are specified by the PDF

1 o
/ [ 7’!}/(’”)
P, = i) e . 27
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The area PDF is then given by the expression

P(Asl, Z) = (Sl As| = |A(D)ID)- (28)

A straightforward calculation using the é-function property

) = — Xn), 29
(f(x) = ZW 80 =) (29)
where x,, is the nth root of f(x), f(x,) = 0, yields
Krel/(i“) -As —1—=«T/(i,)Z
PUAZ) = ——— | —
(l | ) (lp)Z|Ax0| AYO
x 0(| A — | Agole”/*D). (30)

Here 6(x) is a unit step function. It can be easily verified
that the PDF is normalized to unity at any Z = const and Eq.
(30) works for any Z # 0; it is singular at Z = 0 because
P is a & function at the source. We note in passing that a
qualitatively similar form of PDF was derived for Stokes wave
statistics in silica glass Raman amplifiers [17]. However, the
long coherent memory of SRS in gases makes our system
fundamentally different from silica glass Raman amplifiers
with an instantaneous medium response. Further, we consider
pump pulses with a strong coherent component superimposed
with weak fluctuations, whereas the authors of [17] discuss the
opposite regime of incoherent pump input.

The PDF of Eq. (30) is displayed in Fig. 1 in logarithmic
scale at several propagation distances. It can be inferred from
Eq. (30) that the PDF shape is determined by two factors. First,
the unit step function describes a shift toward larger areas upon
propagation due to the Stokes pulse amplification. Second, the
power-law dependence is brought about by the noise transfer
from the pump to the Stokes pulse in the course of SRS.
Qualitatively, the interplay of these two trends fixes the Stokes
area PDF shape. Further analysis of Eq. (30) reveals that the
area PDF becomes so broad tailed that it ceases to attain finite
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FIG. 1. Analytics: Stokes area PDF in the logarithmic scale
at several propagation distances Z. The numerical values of the
parameters are T, = 10°T,, P, = 1073P,, and " = 0.24.
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FIG. 2. Intensity profiles of the pump and Stokes modes at Z =
0.3. The numerical values of the parameters are T, = 10T, P, =
1073 P,,and T = 0.24.

moments at the distances

Z2Z,=«kl/ip), (€29)
estimating for our regime « ~ 1, I' ~ 1, and (i,) ~ 1072,
corresponding to 10% amplitude noise in the pump z, ~
100Lgsgrs =~ 10 cm. It follows from Eq. (31) that z, is controlled
by the pump noise intensity and coherent memory of the
system; it can drop to a fraction of Lggrg for sufficiently long
coherent memory times (small I') or noisy enough pump. Thus,
rogue-wave-like phenomena can potentially unfold at very
short propagation distances and be quantitatively described
by our analytical theory. We stress that this conclusion is
applicable to input Stokes pulses of any shape.

To test our UPA predictions, we carried out numerical
simulations for the long intense pump case such that 7, =
107, and Py = 1073P,. We use i, = 1072 and " = 0.24 in
our numerical simulations. In Fig. 2 we display the average
pump and Stokes pulse profiles at Z = 0.3 indicating that
the UPA still holds at this propagation distance. We then
exhibit the Stokes area PDF at several propagation distances
and compare it with the corresponding analytical results in

Fig. 3. It can be seen in the figure that while the theory and
simulation agree very well up to Z = 0.3 for our pump noise
level and coherent memory time, the two start deviating at
Z = 0.5 and differ substantially at Z = 0.7. Thus the UPA
breaks down rather quickly in this parameter regime. The
ORW formation can occur at distances of the order Z ~ 0.1,
though, provided coherent memory I'"! is boosted by two

orders of magnitude for the same pump noise level. This can

be achieved by increasing the pump intensity, for instance,
which would incidentally extend the UPA applicability range.

However, the true significance of our UPA theory lies in its

ability to qualitatively predict the physical nature of the PDF

transformation in SRS with noisy pump. We will use the gained
insights to explain the emergence of non-Gaussian statistics
beyond the UPA in the following section.
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FIG. 3. Analytical versus numerical Stokes area PDF profiles at
several propagation distances inside the fiber. The numerical values
of the parameters are T, = 10%T,, P, = 10_3P,,, and I' = 0.24.

V. NON-GAUSSIAN STATISTICS BEYOND THE
UNDEPLETED PUMP APPROXIMATION

We now numerically simulate SRS with fluctuating pump
pulses beyond the UPA. As a generic realization of the system,
we consider a hydrogen-filled HCPCF with typical parameters
representative of the HCPCFs previously designed for SRS
experiments [36]. The HCPCF has a low-loss transmission
window between 1030 and 1150 nm. As aresult, only the pump
at A, = 1064 nm and first Stokes at A, = 1134 nm modes,
interacting with the J =1 to J =3 rotational transition,
can copropagate in the HCPCF. The coherent component of
the pump is supplied by a W, = 100 uJ laser operating at
1064 nm. The characteristic Raman interaction length and
SRS interaction time are Lsgs = 1 mm and Tsgs = 1.2 ns,
respectively. We assume the relaxation time of hydrogen in
the HCPCF to be y~! =5 ns [37]. The coherent memory
parameter I is then I" = 0.24; it can be controlled by adjusting
the pump energy W,. The input pump (coherent component)
and Stokes pulses are assumed to be Gaussian of the same
duration t, = t; = t, = 10 ns, but the Stokes input is much
weaker such that the Stokes input energy is just 1% of the pump
one. The pump and Stokes pulses are centered at ty = 24 ns.
We treat the pump source noise level, quantified by AP,/ P,
as a variable in our simulations.

In Fig. 4 we display the average intensities of the pump
and Stokes pulses at several propagation distances. As is
expected, the Stokes pulse intensity grows at the pump
expense. Note characteristic oscillations experienced by both
average intensity profiles, which are unambiguous signatures
of a transient SRS regime. We then exhibit a time series of
the peak Stokes power in Fig. 5(a) for AP,/P, = 0.3 and in
Fig. 5(b) for AP,/ P, = 0.5 at the fiber exit. It can be inferred
from the figure that although extreme events do take place
in both cases—the peak power reaches magnitudes around
20-40 times its average value at the fiber exit—the maximum
attainable power level strongly depends on the pump noise
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FIG. 4. Average intensity profiles of the pump (dashed line)
and Stokes (solid line) pulses at several propagation distances. The
coherent memory parameter is taken to be I' = 0.24.

level. In particular, the curve in Fig. 5(b) can be interpreted
to represent a bona fide ORW with a peak pulse amplitude
exceeding 6 times its average value at the fiber output.

Next we examine the Stokes power statistics in the present
SRS regime. In Fig. 6 we exhibit the peak Stokes power
PDF in logarithmic scale for the two cases: (a) relatively
short system memory with ' =0.97 and (b) rather long
system memory with I' = 0.24. The peak Stokes power is
evaluated at the fiber output and scaled to its average value
there. The non-Gaussian behavior of the PDF is manifest
in both cases on comparing it with a straight line Gaussian
PDF of the peak pump power. Further, we can infer from
Fig. 6 that the peak Stokes power PDF acquires a long tail
and the tail extent markedly increases as the system coherent
memory is enhanced. This is because the enhanced coherent
memory implies that the SRS interaction is robust against
medium dipole damping, thereby accommodating efficient
noise transfer from the pump to the Stokes pulses. This point
illustrates the crucial role the coherent memory effects play in
ensuring that extreme events take place in the system. Finally,
we exhibit the peak Stokes power PDF for rather coherent

20
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0 ./ \\ 0
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FIG. 5. Stokes pulse ensemble realization at the fiber exit for
(a)AP,/P, =0.3and(b) AP,/P, = 0.5. The pulse power is scaled
to the average power (P) at the fiber exit. In both cases, ' = 0.24.
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FIG. 6. Peak power PDF of a Stokes pulse ensemble at the fiber
output for (a) relatively short, I' = 0.97, and (b) rather long, I' =
0.24, coherent memory times. The pulse power is scaled to the average
power (P) at the fiber exit. The source noise level is AP,/ P, = 0.5.

and nearly incoherent pump sources in Fig. 7. It is evident
from the figure that in sharp contrast to the noisy Stokes SRS
case, the PDF in the present regime is virtually independent
of the source pump coherence time. This circumstance can be
explained by noting again the different physical origin of PDF
tails, and hence ORW emergence, in the two SRS regimes that
we have already discussed. Specifically, the PDF structure in
the present situation depends solely on the amount of pump
noise, but not on the noise particulars, including its spectrum
and, by extension, its coherence time.

VI. SUMMARY

We explored the emergence of non-Gaussian statistics and
optical rogue waves in stimulated Raman scattering in gases,
focusing on a gas-filled, hollow-core photonic crystal fiber as
a particular system realization. We specifically examined the
role of coherent memory and source noise modeling in extreme
event excitation in the system. We have demonstrated the
crucial role that coherent memory plays in triggering heavy-
tailed statistics of the system in the situations when the input
Stokes or pump pulses are noisy. However, the non-Gaussian
statistics emergence has fundamentally different physical
origins in the two cases. On the one hand, we demonstrated
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FIG. 7. Peak power PDF of a Stokes pulse ensemble at the
fiber output for relatively coherent (solid line) and nearly incoherent
(dashed line) sources. The pulse power is scaled to the average pump
power (Py) at the source. The source noise level is AP,/P, = 0.01
and I' = 0.24.

earlier [22] that heavy-tailed statistics and ORWs result from
the competition for the pump energy among coherent modes
constituting a statistical Stokes input. On the other hand, we
have shown here that the non-Gaussian statistics and ORW
excitation in SRS with noisy pump can be attributed to noise
transfer from the pump to initially coherent Stokes pulses. We
have developed the analytical theory of such noise transfer in
the system in the initial stage of SRS, well described within
the undepleted pump approximation. We also discussed the
parameter regime in which the emergent extreme events can
be quantitatively described under the UPA. The insights gained
enabled us to interpret our numerical findings beyond the
undepleted pump approximation, which qualitatively follows
the same scenario as was discovered under the UPA.
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