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We develop a general coherent (pseudo)-mode representa-
tion of partially coherent surface plasmon polaritons in the
Kretschmann excitation geometry. We obtain explicit ana-
lytical results for coherent pseudo-modes of narrowband
SPPs with Gaussian spectra and spectral correlations. We
also evaluate the global degree of coherence of such SPPs
which quantifies their overall coherence state within a given
spatial domain. Not only will the developed coherent
pseudo-mode representation facilitate SPP coherence state
characterization, but it will also substantially reduce the
computational complexity of the studies of partially coher-
ent SPP interactions with nanoparticles. © 2018 Optical
Society of America

OCIS codes: (030.1640) Coherence; (030.1670) Coherent optical
effects; (240.6680) Surface plasmons.
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Surface plasmon polaritons (SPPs) have recently emerged as a
workhorse of a thriving research field of plasmonics [1] with a
number of promising multidisciplinary connections to other
branches of optical physics [2–7]. Recently, there has been
growing appreciation of the role the SPP spatial coherence plays
in controlling plasmon spatial, spectral, and polarization distri-
butions [8–10]; therefore, the coherence-customized SPPs are
expected to serve as versatile tools in numerous multidiscipli-
nary applications [11–15]. To this end, a general theoretical
framework was established to describe polychromatic, partially
coherent SPPs in the Kretschmann excitation geometry [16]
and to demonstrate how nontrivial, structured polychromatic
SPP fields can be excited there [17].

The coherent mode representation of partially coherent op-
tical fields [18] helps gain insight into their complicated space–
time behavior and is often instrumental in discovering the novel
classes of such fields [19–21]. Whenever the true orthonormal
coherent modes cannot be simply determined, nonorthogonal
pseudo-modes [22–24] can serve in their stead; such

pseudo-modes have substantially facilitated recent discovery
[25], theoretical description [24,26], and experimental realiza-
tion [27] of several new classes of volume partially coherent
optical beams and pulses. To the best of our knowledge,
however, neither the coherent mode nor the pseudo-mode rep-
resentation of partially coherent surface electromagnetic fields
has been studied to date.

In this Letter, we put forward a general coherent pseudo-
mode decomposition of SPPs in the Kretschmann SPP cou-
pling geometry. We present explicit analytical expressions for
the coherent pseudo-modes and their power factors for the case
of quasimonochromatic SPPs with Gaussian spectra and
Gaussian spectral correlations. We also evaluate the global de-
gree of coherence of such Gaussian Schell-model (GSM) SPPs.
Our results shed light on the SPP coherence distribution in
one of the most fundamental coupling configurations in
plasmonics.

We begin by considering a partially coherent SPP field, ex-
cited in the Kretschmann configuration [1] by a TM-polarized,
polychromatic light beam with tailored coherence properties
(see Fig. 1). In the Kretschmann excitation geometry, a homog-
enous, isotropic, and nonmagnetic metal film is deposited on a
glass prism situated in the xy plane. We take the x axis along the
SPP propagation direction and assume that the planar metal–
air interface coincides with z ! 0. A polychromatic electric
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Fig. 1. Illustrating partially coherent SPP field excitation in the
Kretschmann configuration.
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field realization of the partially coherent SPP field ensemble in
the air, at a space–time point "r; t#, then reads [16]

E"r; t# !
Z

ω$

ω−

E"ω#p̂"ω#ei%k"ω#·r−ωt &dω; (1)

where ω' specifies the SPP frequency bandwidth, E"ω#
stands for a complex random spectral amplitude at the origin
(r ! 0), and

k"ω# ! kx"ω#êx $ kz"ω#êz ; (2)

p̂"ω# ! %k"ω# × êy&∕jk"ω#j; (3)

are the wave and unit polarization vectors, respectively. Here êx ,
êy, and êz are the Cartesian unit vectors. For simplicity, we as-
sume that the metal film is thick enough so that mode coupling
across the metal can be neglected [28], whereby the compo-
nents of the SPP wave vector at the metal–air interface in
Eq. (2) are given by

kx"ω# !
ω
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵr"ω#

ϵr"ω# $ 1

s

; kz"ω# !
ω
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ϵr"ω# $ 1

s

; (4)

where c is the speed of light in vacuum, and ϵr"ω# denotes the
complex-valued relative permittivity of the metal.

The second-order statistical properties of a partially coherent
SPP field can be specified by the electric correlation matrix
[29], which is obtained by averaging over an ensemble
of the field realizations at two space–time points, i.e.,
Γ"r1 ; t 1 ; r2 ; t 2 # ! hE("r1 ; t 1 #ET"r2 ; t 2 #i. Here the asterisk,
superscript T, and the angle brackets denote complex conjuga-
tion, matrix transpose, and ensemble average, respectively. It
follows from Eqs. (1)–(3) that

Γ"r1 ; t 1 ; r2 ; t 2 # !
Z

ω$

ω−

Z
ω$

ω−

W "ω1 ;ω2 #p̂("ω1 #p̂T"ω2 #

× e−i%k("ω1 #·r1 −k"ω2 #·r2 &ei"ω1 t 1 −ω2 t 2 #dω1 dω2 ; (5)

where

W "ω1 ;ω2 # ! hE("ω1 #E"ω2 #i (6)

is an SPP spectral correlation function. The function
W "ω1 ;ω2 # determines the second-order SPP statistical proper-
ties, including spectral and spatial distribution, energy flow, the
polarization state, and two-point spatio-temporal coherence of
the SPP fields [16,17]. It is shown in [16] how W "ω1 ;ω2 # is
related to the second-order spectral and angular correlation
function of an electromagnetic source beam exciting polychro-
matic SPPs in the Kretschmann configuration. We also
demonstrated elsewhere that W "ω1 ;ω2 # and, hence, the
second-order field correlations of statistically stationary SPPs
can be recovered from far-field measurements [30].

To develop a coherent, in general pseudo-mode, represen-
tation of a generic Γ"r1 ; t 1 ; r2 ; t 2 #, we start by expanding the
SPP spectral correlation function W "ω1 ;ω2 # in terms of
coherent modes as

W "ω1 ;ω2 # !
X

n
βnφ(

n"ω1 #φn"ω2 #; (7)

where fβng are real and nonnegative eigenvalues of the linear
Fredholm integral equation [18], and the corresponding
eigenmodes fφn"ω#g form an orthonormal set so that

Z
ω$

ω−

φ(
m"ω#φn"ω#dω ! δmn: (8)

It follows at once on substituting from Eq. (7) into Eq. (5) after
a rearrangement that the SPP field correlation matrix can be
represented as

Γ"r1 ; t 1 ; r2 ; t 2 # !
X

n
νnΦ(

n"r1 ; t 1 #ΦT
n "r2 ; t 2 #; (9)

where we have introduced a set of normalized vector modes
fΦn"r; t#g as

Φn"r; t# !
Θn"r; t#hR

$∞
−∞

R
D ΘT

n "r; t#Θ(
n"r; t#d2 rdt

i
1 ∕2 ; (10)

such that
Z

$∞

−∞

Z

D
ΦT

n "r; t#Φ(
n"r; t#d2 rdt ! 1 ; (11)

with D being the spatial SPP excitation volume, and the modal
weights fνng as

νn ! βn

Z
$∞

−∞

Z

D
ΘT

n "r; t#Θ(
n"r; t#d2 rdt: (12)

Here

Θn"r; t# !
Z

ω$

ω−

φn"ω#p̂"ω#ei%k"ω#·r−ωt&dω (13)

are the unnormalized vector modes. A quick glance at Eq. (13)
reveals that due to the presence of SPP losses and a nontrivial
dependence of k on ω, the modes fΦn"r; t#g are not orthogo-
nal, even though fφn"ω#g are. Thus, fΦn"r; t#g are pseudo-
modes in the spirit of [22–24]. We stress that these coherent
vector pseudo-modes are still uncorrelated, although the or-
thogonality condition has been relaxed; in particular, the modal
weights fνng, which specify the fraction of the source energy
carried by a given mode, add up to the total energy of the source
as a straightforward consequence of Eqs. (9) and (11).

Further, in complete analogy with the volume partially
coherent sources, the global degree of coherence of the partially
coherent SPPs can be defined as a ratio of the energy carried by
the lowest-order mode to the total energy of the SPP source
[31,32] as

G !
ν0PN −1
n!0 νn

; (14)

where N is an effective number of excited modes. The global
degree of coherence is bounded as 0 ≤ G ≤ 1 , with the upper
and lower limits corresponding to the fully coherent and fully
incoherent sources, respectively. Thus, given the orthonormal
modes of W "ω1 ;ω2 #, which can be determined, at least in
principle, by solving the Fredholm integral equation,
Eqs. (9)–(13) furnish the coherent pseudo-mode representation
of any polychromatic SPP field in the Kretschmann geometry,
and Eq. (14) quantifies the overall coherence of the SPP field
within the excitation volume.

To illustrate our general results, we consider a GSM for the
SPP spectral correlations such that
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W "ω1 ;ω2 # ! I 0 exp

"
−
"ω1 − ω0#2 $ "ω2 − ω0#2

4 σ2s

#

× exp
"
−
"ω1 − ω2 #2

2 σ2c

#
; (15)

where I 0 is a constant, ω0 is the SPP central frequency, and σs
and σc denote the SPP spectral width and spectral coherence
length, respectively. The normalized eigenfunctions and the
corresponding eigenvalues of the GSM source are analytically
known as [18]

φn"ω# !
$
2 c0
π

%
1 ∕4 1

"2 nn!#1 ∕2

×Hn%"ω − ω0#"2 c0#1 ∕2 &e−c0"ω−ω0#2 ; (16)

and βn! I 0%π∕"a0$b0$ c0#&1 ∕2 %b0∕"a0$b0$ c0#&n, where
a0 ! "4 σ2s #−1 , b0 ! "2 σ2c #−1 , and c0 ! "a20 $ 2 a0b0#1 ∕2 ; Hn
is a Hermite polynomial of order n. To simplify our calcula-
tions, we further assume that the source is spectrally narrow-
band such that the metal dispersion can be ignored [16],
implying that ϵr"ω# ≈ ϵr"ω0#. It then follows at once that at
this level of approximation the frequency integration ranges
in Eqs. (8) and (13) can be extended all the way to infinity.
Under these conditions, and on substituting from Eq. (16) into
Eq. (13), we obtain the following analytical expressions for the
coherent vector pseudo-modes of a GSM SPP:

Θn"r; t# ! p̂"ω0#Θn"r; t#; (17)

with

Θn"r; t# !
$
2 π
c0

%
1 ∕4 in

"2 nn!#1 ∕2
ei%k"ω0#·r−ω0t&

×Hn

"
k"ω0# · r − ω0tffiffiffiffiffiffiffi

2 c0
p

ω0

#
e−%k"ω0#·r−ω0t&2 ∕"4 c0ω2

0#: (18)

Using Eqs. (10), (12), (17), and (18), we can numerically
evaluate the coherent pseudo-modes and the corresponding
global degree of coherence for the GSM SPPs.

In Fig. 2, we exhibit the space–time distributions of the first
four pseudo-mode functions Φn"x; t# ≡ p̂"ω0# ·Φn"x; t#, with
n ! 0; 1 ; 2 ; 3, for a narrowband GSM SPP at an Ag–air inter-
face with the SPP central wavelength λ0 ! 653 nm. It can be
inferred from Fig. 2 that each mode remains highly confined
over the SPP propagation distance l SPP"λ0#, and the peak
amplitude position of each mode experiences a time shift on
SPP propagation away from the excitation point. The lateral
shift of each mode in the space–time domain in the absence
of dispersion arises as a consequence of the mode phase shift
in the space–frequency domain, as evidenced by Eqs. (13) and
(18). We note in passing that a similar dynamical phase shift
was utilized to experimentally generate self-steering partially
coherent beams in free space [33]. Further, the mode of
order n has exactly n nodes and, thus, appears to be split into
n$ 1 lobes.

In Fig. 3, we display the normalized modal weights for GSM
SPP at an Ag–air interface as a function of the mode order n for
different values of σc and σs. Figure 3 reveals that the energy
carried by each mode decreases monotonously with the mode
number n at a rate depending on both σc and σs. As σc de-
creases or σs increases, the SPP field becomes less coherent,

so that we have to increase the effective number of excited
modes to faithfully represent such a field.

Further, we evaluate the global degree of coherence G of a
GSM SPP at an Ag–air interface as a function of σc and σs,
respectively. The results are exhibited in Fig. 4. It is seen from
the figure that the global degree of coherence increases with σc
and decreases with σs. Moreover, G tends to zero for spectrally
uncorrelated SPPs, σc → 0, even though the longitudinal
coherence length of such SPPs remains on the order of a
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Fig. 2. Space–time distributions of the first four pseudo-mode am-
plitudes jΦn"x; t#j for a narrowband GSM SPP at an Ag–air interface
(z ! 0) with the central wavelength λ0 ! 653 nm. The spectral width
σs and the spectral coherence length σc of W "ω1 ;ω2 # are taken to be
0.02 ω0 and 0.004 ω0, respectively, where ω0 ! 2 πc∕λ0 is the SPP
central frequency. l SPP"λ0# ! 1 ∕k 0 0x "λ0# is the SPP propagation length,
with the double prime denoting an imaginary part. The relative
permittivity of Ag is obtained using the empirical data of [34].
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Fig. 3. Normalized modal weights νn∕ν0 for a narrowband GSM SPP
with the central wavelength λ0 ! 653 nm as a function of the mode
order n at an Ag–air interface. The parameters are σs ! 0.02 ω0, σc !
0.004 ω0 (blue solid curve), σs ! 0.02 ω0, σc ! 0.02 ω0 (orange dashed
curve), σs ! 0.01 ω0, and σc ! 0.004 ω0 (red dotted curve). Here
ω0 ! 2 πc∕λ0 is the SPP central frequency. We used the empirical data
of [34] to evaluate the relative permittivity of Ag.
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few wavelengths [16]. As monochromatic SPP fields are fully
coherent, their global degree of coherence equals unity.

Finally, we demonstrate that G is a robust measure of the
overall coherence of narrowband SPPs. In Fig. 5, we display the
global degree of coherence of a narrowband GSM SPP as a
function of the central wavelength λ0 at Ag–air and Au–air in-
terfaces for different spectral coherence lengths. It is manifest in
the figure that G is virtually independent of the central wave-
length λ0 of narrowband GSM SPPs, thereby making G a con-
venient quantitative measure of their global coherence
properties. We also conclude from Fig. 5 that, at least for con-
ventional plasmonic materials, G is only weakly affected by the
metal properties for narrowband SPPs, as seen by comparing
the orange dashed and green dashed-dotted curves in Fig. 5.

In conclusion, we have developed a general coherent pseudo-
mode representation of polychromatic SPPs in the Kretschmann
excitation configuration. We derived explicit analytical expres-
sions for the pseudo-modes and their weight factors for narrow-
band GSM SPPs and discussed the space–time distributions of a
few lower-order pseudo-modes. We also evaluated the global
degree of coherence of GSM SPPs which specifies their overall
coherence properties within the excitation region. Our results
can help to quantitatively characterize the statistical properties

of SPPs and to facilitate numerical studies of the partially co-
herent SPP interactions with nanoparticles in one of the most
fundamental excitation geometries in plasmonics.
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Fig. 4. Global degree of coherence of a narrowband GSM SPP with
the central wavelength λ0 ! 653 nm at an Ag–air interface as a func-
tion of the spectral coherence length σc (the spectral width σs is fixed at
0.02 ω0) (left panel), and of the spectral width σs (the spectral coher-
ence length is fixed at 0.02 ω0) (right panel). Here ω0 ! 2 πc∕λ0 is the
SPP central frequency. The relative permittivity of Ag corresponds to
the empirical data of [34].
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Fig. 5. Global degree of coherence of a narrowband GSM SPP at an
Ag–air interface as a function of the central wavelength λ0 for different
spectral coherence lengths σc : σc ! 0.06ω0 (blue solid curve), σc !
0.02 ω0 (orange dashed curve), σc ! 0.004 ω0 (red dotted curve). The
green dashed–dotted curve represents G at an Au–air interface with
σc ! 0.02 ω0. The source spectral width σs is taken to be 0.02 ω0.
Here ω0 is the central frequency at λ0 ! 653 nm. We use the empiri-
cal data from [34] to evaluate the relative permittivities of Ag and Au.
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