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We explore electromagnetic coherence lattices in planar
polychromatic surface plasmon polariton (SPP) fields.
When the SPP constituents are uncorrelated—and thus
do not interfere—coherence lattices arise from statistical
similarity of the random SPP electromagnetic field. As
the SPP correlations become stronger, the coherence lattices
fade away, but the lattice structure reemerges in the spectral
density of the field. The polarization states of the structured
SPP lattice fields are also investigated. Controllable
plasmonic coherence and spectral density lattices can find
applications in nanophotonics, such as nanoparticle
manipulation. © 2018 Optical Society of America

OCIS codes: (030.1640) Coherence; (240.6680) Surface plasmons;

(260.2110) Electromagnetic optics.
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Optical lattices, constituting periodic variations in the intensity,
polarization state, or phase distribution of optical fields [1–4],
have been widely studied and advanced in various application
areas, such as laser cooling and trapping of neutral atoms [5],
lattice light-sheet microscopy [6,7], sorting microscopic par-
ticles [8], and photonic crystal engineering [9]. More recently,
altogether different types of optical lattices, viz., optical coher-
ence lattices, which refer to optical fields having periodic coher-
ence structures, have been introduced theoretically [10] and
realized experimentally [11]. Propagation of optical coherence
lattice fields demonstrates that they may lead to promising ap-
plications in image transfer and robust free-space optical com-
munications [12,13]. Also, electromagnetic coherence lattices
with totally unpolarized three-dimensional polarization states
were found in purely evanescent near fields [14].

Surface plasmon polaritons (SPPs) [15] are central to
nanophotonics [16] and modern plasmonics [17], spawning a
broad range of interdisciplinary science and engineering [18].
To date, plasmonics has mainly involved fully coherent fields,
although SPPs are also created by partially coherent light [19].
However, there is now an increasing recognition that partial
coherence, as a novel degree of freedom, has a decisive role

in controlling the spatial, temporal, and polarization properties
of the SPP fields themselves [20–22]. Therefore, tailoring the
coherence features of SPPs is of fundamental importance. A
crucial step in this direction was taken recently by advancing
a framework to customize the electromagnetic coherence of
polychromatic SPPs in the Kretschmann geometry [23], and
a robust protocol to determine SPP coherence from the scat-
tered far-field spectrum was proposed [24]. Moreover, a
coherent-mode decomposition of generic partially coherent
SPPs was advanced [25], and planar axicon-like SPP fields
of varying states of coherence were analyzed [26]. Such plas-
mon coherence engineering is expected to be instrumental
for creating SPP fields with the desired statistical properties.
In this connection, generating SPP coherence lattices presents
both fundamental interest and is important with a view on a
range of optical arrangements.

In this Letter, we consider the synthesis of electromagnetic
coherence lattices in planar, polychromatic surface optical fields
composed of partially correlated SPPs in the Kretschmann
setup. We call these novel, structured SPP fields of controlled
coherence SPP lattice (SPPL) fields. We show that despite lack
of interference, uncorrelated SPPs lead to coherence lattices of
varying forms through statistical similarity. The electromag-
netic coherence lattices embedded in the SPPL field then
gradually vanish as the SPP correlations become stronger, only
for the lattices to reemerge in the spectral density and the
polarization state of the field. The subwavelength periodicity
of SPPLs is attractive for many applications, ranging from
highly controlled excitation of random molecule or quan-
tum-dot sets (coherence lattices) to nanoparticle trapping (spec-
tral density or polarization lattices). In particular, partially
coherent SPPLs can be employed to engineer controllable mul-
tiparticle nanoantenna array configurations, which are stable to
surface defects and environment fluctuations.

The system at hand, analogous to Kretschmann’s setup [15],
involves a homogeneous, isotropic, and nonmagnetic metal
film deposited on a glass prism in the xy plane (see Fig. 1).
The SPPL field at the metal–air interface is composed of
N ≥ 2 SPP modes with the excitation positions distributed
uniformly on a circle of radius a and centered at the origin
O. We let r0n � −aên be the excitation point of the nth
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SPP mode that propagates in the direction ên � cos θnêx �
sin θnêy toward the center O, where θn � 2π�n − 1�∕N is the
azimuthal angle with respect to the x axis, and êx and êy are
the Cartesian x and y unit vectors. The spatial electric part
of the SPPL field in air, at point r and (angular) frequency
ω for �x2 � y2�1∕2 ≤ a, is then given by

E�r,ω� �
XN
n�1

En�ω�p̂n�ω�eikn�ω�·�r−r0n�, (1)

where En�ω� is the complex-valued electric-field amplitude of
the nth SPP mode at the excitation point. Moreover,

kn�ω� � kt�ω�ên � kz�ω�êz , (2)

p̂n�ω� � k̂n�ω� × �êz × ên�, (3)

are the SPP wave and normalized polarization vectors, respec-
tively, with êz being the Cartesian unit vector in the z direction
and k̂n�ω� � kn�ω�∕jk�ω�j [27]. Note that the wave-vector
magnitude jk�ω�j is independent of θn. We further take the
film to be thick enough, so that SPP-mode overlap across the
metal can be neglected [28,29]. Thus, the tangential and nor-
mal wave-vector components in Eq. (2) read [15]

kt�ω� �
ω

c

�
ϵr�ω�

ϵr�ω�� 1

�
1∕2

, kz�ω� �
ω

c

�
1

ϵr�ω�� 1

�
1∕2

, (4)

where ϵr�ω� denotes the complex-valued relative permittivity
of the metal and c is the speed of light.

In view of plasmon coherence engineering [23], the spatial
and temporal coherence of the SPPL field can be tailored
through modulation of the spectral correlations among
the individual SPP modes. To this end, we consider E�r,ω�
in Eq. (1) as a field realization, and the spectral electric coher-
ence matrix, which encompasses all of the second-order statis-
tical properties of a (stationary) electromagnetic field, is
obtained via appropriate averaging [30], i.e., W�r1, r2,ω� �
hE��r1,ω�ET�r2,ω�i, where the asterisk, superscript T, and an-
gle brackets denote the complex conjugate, matrix transpose,
and ensemble average, respectively. It then readily follows from
Eqs. (1)–(3) that

W�r1, r2,ω� � e−2k
0 0
t �ω�a

XN
n�1

XN
m�1

W nm�ω�Knm�ω�

× ei�km�ω�·r2−k
�
n �ω�·r1 �, (5)

where W nm�ω� � hE�
n�ω�Em�ω�i and Knm�ω� �

p̂�n�ω�p̂Tm�ω� are the spectral correlation function and the

3 × 3 polarization-state matrix associated with the nth and
mth SPP constituents. Further, k 0 0t �ω� is the imaginary part of
kt�ω�, determining the SPP propagation length l SPP�ω� �
1∕k 0 0t �ω�. We observe that once the metal parameters, radius a,
and mode number N are known, all elements apart from
W nm�ω� are specified in Eq. (5). In other words, the spectral
correlation function is an additional degree of freedom that can
be exploited, through suitable SPP excitation, to control the
physical properties of the SPPL field. This is analogous to the
case with copropagating SPPs, for which the spectral correla-
tion function has proven a powerful tool to tailor the field’s
spatiotemporal coherence state [23].

We consider first the extreme case when all the SPP modes
are completely uncorrelated and have equal initial (excitation)
intensities jEn�ω�j2 � jE�ω�j2 � ISPP�ω�. The SPP correla-
tion function then becomes W nm�ω� � I SPP�ω�δnm, with δnm
being the Kronecker delta. Under these conditions, the
3 × 3 spectral electric coherence matrix in Eq. (5) reduces to

W�r1, r2,ω� � I SPP�ω�e−2k 0 0
t �ω�a

XN
n�1

Knn�ω�

× ei�kn�ω�·r2−k�
n �ω�·r1 �: (6)

To assess the partial coherence of the SPPL field, we use the
spectral electromagnetic degree of coherence [30],

μ�r1, r2,ω� �
��W�r1, r2,ω�

��
F

�trΦ�r1,ω�trΦ�r2,ω��1∕2
, (7)

where k · kF is the Frobenius norm, tr denotes the matrix trace,
and Φ�r,ω� � W�r, r,ω� is the (spectral) polarization matrix.
The quantity in Eq. (7), obeying 0 ≤ μ�r1, r2,ω� ≤ 1, is a mea-
sure of the correlations at ω among all electric-field compo-
nents at the two spatial points. The upper and lower limits
correspond to full coherence and complete lack of coherence.
It now follows from Eqs. (2), (3), (6), and (7) that the degree of
coherence for the “uncorrelated SPPL field” of Eq. (6), at points
r1 � 0 and r2 � r, becomes

μ2�r,ω� � 1

N
� 2

PN−1
n�1

PN
m�n�1 ξnm�r,ω�

N
PN

n�1 ξnn�r,ω�
, (8)

where the space–frequency dependent function is

ξnm�r,ω� �
�
1� κ2�ω� cosΔθnm

1� κ2�ω�

�
2

e−k
0 0
t �ω��Cnm�x�Snm�y�

× cos�k 0t�ω��Cnm−x � Snm−y�� (9)

with Cnm	 ≡ cos θn 	 cos θm, Snm	 ≡ sin θn 	 sin θm,
Δθnm � 2π�n − m�∕N , κ�ω� � jkz�ω�j∕jkt�ω�j, and k 0t�ω�
being the real part of kt�ω�.

Note that μ�r,ω� in Eq. (8) is independent not only of the
height z but also of the circle radius a, which effectively merely
scales the general electric coherence matrix W�r1, r2,ω� in
Eq. (5). Hence, the spatial coherence distribution of SPPL
fields is stable. For instance, the uncorrelated SPPL field is
highly coherent near the center even when the radius a is large
and the SPP modes are strongly attenuated. This is evidenced
in Fig. 2, illustrating the spatial behavior of μ�r,ω� for an un-
correlated SPPL field at an Ag–air interface (z � 0) at free-
space wavelength λ � 632.8 nm with different numbers of
SPP modes. The plots show clearly that the electromagnetic

x

Glass
Metal
Air

y
z

OOOOO
a

Fig. 1. Schematic illustration of the synthesis of a partially coherent
SPPL field. All SPP modes with their excitation points located uni-
formly on a circle of radius a at the metal–air interface (xy plane)
propagate toward the coordinate origin O.
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degree of coherence has a lattice-like, subwavelength structure
with periodic rotational symmetry. When the mode number N
is very large, the coherence lattice evolves into an axicon-field-
like distribution (a Bessel-correlated SPP field [26]). The varia-
tion of μ�r,ω�, which might appear counterintuitive as the SPP
modes are uncorrelated and thus do not interfere, is a
result of statistical similarity of the field [31,32].

Moreover, we find from Fig. 2 and Eq. (8) that μ�0,ω� < 1,
indicating that the SPPL field at the center is not fully self-
coherent [30]. The physics behind this result lies in the polari-
zation state of the uncorrelated SPPL field. It is specified by the
3 × 3 polarization matrix, obtained from Eq. (6) as

Φ�r,ω�� I SPP�ω�e−2�k 0 0
t �ω�a�k 0 0

z �ω�z�
XN
n�1

Knn�ω�ξnn�r,ω�, (10)

where k 0 0z �ω� is the imaginary part of kz�ω�. The ratio of tan-
gential to normal components of Φ�r,ω� reads

Φxx�r,ω� �Φyy�r,ω�
Φzz�r,ω�

� κ2�ω�, (11)

with κ�ω� � jkz�ω�j∕jkt�ω�j as before. For typical plasmonic
metals (e.g., Ag and Au), we have κ�ω� ≪ 1 in the red part of
the visible spectrum [33], whereby Eq. (11) implies that the
uncorrelated SPPL field is highly polarized in the z direction.
Nevertheless, the field will acquire a significant tangential com-
ponent toward the blue part of the spectrum (although the nor-
mal component remains dominant). If one considers only the
tangential field, its polarization state can be analyzed in terms of
the four Stokes parameters [30] Sj�r,ω� � tr�Φt�r,ω�σj� with
j ∈ �0,…, 3�, where Φt�r,ω� is the 2 × 2 polarization matrix
in the transverse plane, σ0 is the 2 × 2 unit matrix, and σ1,
σ2, σ3 are the three Pauli matrices. The degree of polarization
P�r,ω� of the tangential field reads P2�r,ω� � P

3
j�1 s

2
j �r,ω�

with sj�r,ω� � Sj�r,ω�∕S0�r,ω� [30].
The top panels in Fig. 3 show the spatial behavior of P�r,ω�

for the tangential component of the uncorrelated SPPL field at
an Ag–air interface (z � 0) at λ � 632.8 nm with different N .
The distributions indicate that the tangential fields are partially

polarized at the circle’s edge, with the maxima of P�r,ω� at the
SPP excitation positions, and gradually become unpolarized at
the center, i.e., P�0,ω� � 0. Due to this unpolarized contri-
bution the SPPL field is not completely self-coherent [30] and
therefore μ�0,ω� < 1 in Fig. 2. We also observe that P�r,ω� is
notably less than one at the edge whenN is large; for the degree
of polarization to reach unity, the radius would have to be much
larger than the actual SPP propagation length l SPP�ω� [26].
The Stokes parameters Sj�r,ω� with j ∈ �1, 2, 3� characterize
the fully polarized part of the field. For the tangential compo-
nent, it is found from Eqs. (9) and (10) and the definition of
the Stokes parameters that S3�r,ω� � 0, implying that the
fully polarized part is linearly polarized. The bottom panels
in Fig. 3 illustrate the spatial behavior of the azimuth angle
φ�r,ω� � �1∕2� arctan�S2�r,ω�∕S1�r,ω�� of the linear polari-
zation for the tangential component of the uncorrelated SPPL
field. We observe that the polarized parts at the SPP excitation
positions point toward the circle’s center, and with the increase
in the SPP-mode number N the polarization state of the po-
larized field contributions gradually becomes indistinguishable
from the radially polarized state.

The correlations (and strengths) of the individual SPP
modes can be modified by the technique of plasmon coherence
engineering [23]. Radially propagating SPPs may also be
launched by other means [26]. As the SPP correlations become
stronger, the electromagnetic coherence and spectral density
structures of the SPPL field naturally change. In the extreme
limit of fully correlated SPP modes, the spectral correlation
function in Eq. (5) factors as W nm�ω� � E�

n�ω�Em�ω� and
the coherence lattices disappear due to complete coherence.
However, the lattices will remarkably reemerge in the spectral
density of the “correlated SPPL field” due to beating among the
SPP modes. The spectral density for a correlated SPPL field is
obtained from the electric field E�r,ω� in Eq. (1) as S�r,ω� �
jE�r,ω�j2, and on taking the SPPs to be in phase and of equal
initial intensity I SPP�ω� we end up with
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Fig. 2. Spatial behavior of the electromagnetic degree of coherence
μ�r,ω� for uncorrelated SPPL fields at an Ag–air interface at the
free-space wavelength λ � 632.8 nm with (a) N � 3, (b) N � 5,
(c) N � 6, (d) N � 8, (e) N � 10, (f ) N � 12, (g) N � 15,
and (h) N � 20 SPP modes. Empirical data are used for Ag [33].
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S�r,ω� � I SPP�ω�e−2�k 0 0
t �ω�a�k 0 0

z �ω�z�
"XN
n�1

ξnn�r,ω�

� 2
XN−1

n�1

XN
m�n�1

1� κ2�ω�
1� κ2�ω� cosΔθnm

ξnm�r,ω�
#
: (12)

The top panels of Fig. 4 illustrate the spatial behavior of S�r,ω�
at an Ag–air interface (z � 0) for λ � 632.8 nm and a �
I SPP�ω� of the correlated SPPL field with different N . As ex-
pected, the spectral densities show similar subwavelength lattice
distributions as the electromagnetic degree of coherence in the
uncorrelated SPPL field. Moreover, in the bottom panels of
Fig. 4, we show the corresponding ratios η�r,ω� between the
normal and tangential contributions to the spectral density, i.e.,
η�r,ω� � Φzz�r,ω�∕�Φxx�r,ω� �Φyy�r,ω�� [cf. Eq. (11)].
The over-exposed areas in the figure stand for η�r,ω� > 10;
thereby, the fields in these regions are highly polarized in the
z direction, whereas the fields are tangentially polarized in the
regions with η�r,ω� → 0. We also observe that the polarization
state of the correlated SPPL field switches rapidly between the
spectral density maxima and minima, where the fields are po-
larized in the normal and tangential directions, respectively, a
clear signature of subwavelength polarimetric structure.

In summary, we have introduced a novel class of statistically
stationary, partially coherent, structured SPPL fields that can be
established by plasmon coherence engineering through an
appropriate superposition of radially propagating SPP modes at
a metal–air interface. In particular, electromagnetic coherence
lattices with subwavelength structure and partially polarized
field states were found in polychromatic SPPL fields composed
of uncorrelated SPPs. We also demonstrated that with the in-
crease of the spectral correlations among the SPP modes, the
lattice structure transfers from the electromagnetic coherence

to the spectral density and the polarization state of the SPPL
fields. Such SPPL distributions may find applications in con-
trolled near-field nanoparticle excitation studies.
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Fig. 4. Spatial behavior of the spectral density S�r,ω� (top panels)
and the ratio η�r,ω� (bottom panels) of the normal and tangential
spectral density contributions to the correlated SPPL field at an
Ag–air interface at the free-space wavelength λ � 632.8 nm with
N � 3 (left column), N � 5 (second column), N � 6 (third col-
umn), and N � 20 (right column) SPP modes. The excitation circle
radius is equal to the SPP propagation length. Note that S�r,ω� in the
top panels is normalized with respect to the initial SPP intensity
I SPP�ω� and the mode number N squared. The over-exposed areas
in the bottom panels stand for η�r,ω� > 10. Empirical data [33]
are used for the relative permittivity of Ag.
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