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Universal structure of field correlations within a fluctuating medium
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We study the structure of the second-order correlation function of scalar wave fields, which are generated by
statistically stationary sources, fluctuating within a homogeneous dissipative medium. We derive a closed-form
analytical expression for the spectral degree of coherence of the wave field. If the dissipation in the medium is
sufficiently small, and the source fluctuations are statistically isotropic, the degree of spatial coherence of the
field produced by any such source is shown to be proportional to the imaginary part of the Green’s function of
the system, with a proportionality factor depending on the dimensionality of the field. The result holds for wave
fields in both three and two spatial dimensions, but not in one dimension. We discuss the physical nature of
such universal forms of the spectral degree of coherence.
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[. INTRODUCTION tion is the influence of dissipation in the medium on the
nature of the field correlations.

Wave fields, which are generated within a homogeneous In the present paper, we address these questions by con-
medium by a statistically stationary fluctuating source, aresidering the second-order correlations of the wave fields gen-
ubiquitous in physics. In electrodynamics, they are associ€rated by statistically stationary sources, which fluctuate in a
ated with the electromagnetic field generated in a medium b¥p-dimensional D=1, 2, or 3, unbounded, homogeneous,
the fluctuating polarizatiof1,2]. Similar systems are en- dissipative medium. We derive a general analytical expres-
countered in acoustics, in connection with sound waves prosion for the spectral degree of coherence of the wave field in
duced by the fluctuating density of a medium. It should beterms of the cross-spectral density of the fluctuating source.
mentioned that the dimensionality of the space of the wavaVe then show that if1) the medium is nonabsorbin(f) the
field need not be limited to three. Thus, electromagneticsource fluctuations are statistically isotropic, d8githe di-
waves, which propagate on a surface and decay exponeﬁ'lenSiona”ty of the space is two and three, the SpeCtral de-
tially in the direction normal to this surfad@], hydrody-  gree of coherence of such a wave field is given hynaver-
namic waves on the surface of a fluid, and cylindrical acoussal function, which is proportional to the imaginary part of
tic waves[4] serve as examples of two-dimensional wavethe Green’s function of the system. We briefly discuss why
fields which can be excited by surface currents or mechanicguch universality does not exist for one-dimensional wave

forces, for example. A vibrating strirf@] and a transmission fields nor for any wave fields in the presence of significant
line [6] are driven one-dimensional wave fields. dissipation in the medium. Unlike the well-known expres-

Since so many different physical systems can be desions for the second-order correlations of electromagnetic

scribed within the framework of a single model, it is instruc- fields due to thermal fluctuatiori&,10], our results hold for
tive to study general statistical properties of such a model. RNy linear wave field, which may be far from thermal equi-
natural question arises regarding the relation between thigbrium.

correlation functions of the wave fields and those of the fluc-

tuating sources that generate these fields. The properties of || GENERAL EXPRESSION FOR THE SPECTRAL

the second-order correlation function of a field are of major peEGREE OF COHERENCE OF THE WAVE FIELD
importance for the understanding of many statistical phe- _

nomena in condensed matter thepry. The structure of the Consider a statistical ensemHle(r,w)e™'“"} of strictly
second-order correlation function of scalar wave fields promonochromatic, scalar wave field1,12 all at the same
duced by statistically stationary sources in a threefrequencyw. The propagation of the field is governed by the
dimensional homogeneous medium was considered in Refdhomogeneous wave equation

[8]. In that paper, it was demonstrated that, provided the
dissipation in the medium is negligible, the spectral degree
of coherence of the wave field has the same functional form
regardless of the properties of the source, provided its fluc-
tuations are statistically isotropic. This surprising result was
further discussed in Ref9]. However, the approach of Ref. Here,{p(r, )} is the ensemble of fluctuating source density,
[8] relies heavily on some particular properties of the threethat produce such a field, andw) is the (generally com-
dimensional Green’s function of the system in configurationPleX) refractive index of the mediurfi.3]. The second-order
space. This feature of the method makes it difficult to drawstatistical properties of the source and of the wave field may
conclusions about theniversalproperties of the spectral de- be specified by the cross-spectral density functions

gree of coherence of wave fields that are shared by wave

fields of differentspatial dimensionality. Another open ques- W, (r1,r2,0)=(p*(ry,w)p(r,0)) 2

2

1)
V2+n2(a))—2 U(r,w)=—4mp(r,m). (D)
Cc
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and
Wu(r,w)=(4w)2f d°R W,(R)

Wy(ry,ra,)=(U*(r;,0)U(ry,w)), ©)

11)

where the angular brackets denote the average over the sta-
tistical ensembles of realizations of the source and of the

field. We introduce the spectral degree of coherence of thg ¢4|ows at once from Eq(8) and from the definitiori4) of
wave field by the expressidi4] the spectral degree of coherence of the field that

J< de eik-(Rfr)

(2m)° K= n}(w)w?/c?|?

Wy(ry,ra, o) " (r ):Wu(f,w)
\/WU(rl,rl,w)\/WU(rz,rz,w)' puth@ Wy(0,0)

pu(ry,ry, )= (12

Because of the statistical homogeneity of the source fluctualN€ integral in Eq.(11) can be evaluated explicitly by a
tions, it is convenient to work in Fourier space. Let straightforward though somewhat tedious calculation out-

lined in the Appendix. The result is

1] — D —ik-r
U(k,w) fd ru(r,mw)e , (5) dDRWp(R)gD(R—r)
. wP(r,w)= : (13
an | ePRWRIGHR)
~f)(k,w)=f dr p(r,w)e k" (6)  where the functiongp(x) characterizing the propagation

properties of the medium is

be theD-dimensional Fourier transforms of the wave field
and of the source density, respectively. It follows at once
from Eq. (1) and from definitiong5) and(6) that the Fourier  gp(x)= HE(Zx]) —HE(—¢*|x])  in two dimensions

sinak|x|)e~ 7 in three dimensions

transforms of the wave field (r,») and of the source den- cosk|x|— ¢/2)e Y| in one dimension.
sity p(r,w) are related by the expression (14)
- 4mp(k, Here,
Uk.w)= kz_#wz)/z @
n“(w)elc K(w) = we' (0)/c|e(w)| Y2 (153
The statistical homogeneity of the source, which we haveand
assumed, implies that
Yw)=we"(w)lc|e(w)|Y? (15b)

Wp(rlir21w)EWp(rvw)1 (8)

_ _ _ _ are the real and imaginary parts, respectively, of the complex
wherer=r;—r,. On introducing the -d|~men5|onal Fou-  wave number(w)=k(w)+iy(w), associated with the fre-
rier transform of the cross-spectral density(k,,k,,w) of  quency . Further, e(w)=€'(w)+i€"(w) is the complex

the fluctuating source by the expression dielectric constant at frequenay. The generally complex
refractive indexn(w)= ye(w). The “phase lag” ¢(w) is
dPk, d®k, defined by the expressiafi(w) = arctafie’(w)/ €' (w)]. In Eq.
Wp(fl,fZ,w)Zf Df ——elantken) (14), sinc(x) =sin(x)/x [15], andH{M(x) is the Hankel func-
(2m)=J (2m) tion of the first kind and of zero order.
><\7V,,(k1,k2,w) 9) Expressiong13) and (14) provide a closed-form repre-

sentation for the spectral degree of coherence of the wave
field in terms of the cross-spectral density of a statistically
homogeneous source. We emphasize that unlike the method
_ _ of Ref. [8], which permits the treatment of only three-
W, (K1, —kz,@)=(2m)Po(k;—ko){|p(ki,®)|?), (100  dimensional wave fields without absorption, our approach
makes it possible to study wave fields in dissipative media of
where (k) is the D-dimensional Dirac delta function. any spatial dimensionality. However, a detailed analysis of
On substituting from Eq(7) into Eqg. (3) and taking the Egs.(13) and(14), reveals that if, dissipation in the medium
ensemble average with the aid of E¢®). and(10) and also is non-negligible, the correlation properties of the wave
making use of Eq(9), we obtain for the cross-spectral den- fields do, in general, depend on those of the driving sources,
sity of the wave field the expression even if the sources are statistically isotropic. Btatisti-

condition(8) is readily seen to be equivalent to the relation
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cally isotropic source we mean, of course, a source whosavhere G;(rq,r,,w) is the Green’s function of the 3D sys-
cross-spectral density dependsrgrandr, only through the tem. This Green'’s function can be represented by the series

distancelr,;—r,|, ie., [cf. formula 8.5311) of Ref.[16]]
W, (r1,r2,0)=W,(|r—r;f, ). (16) gklr=r't = o
. N . N ————=ik > ji(kro)h{P(kr.)
In order to gain some insight into the influence of dissipation 4ar|r—r']| =0
on the universality of the field correlations, we may note that |
in the presence of appreciable dissipati@sorption the % /a1 4
spectral degree of coherence of the field at any pair of points xm22,| Yim(0", ) Yim(6,b). (20)

either can be a monotonic function of the distance between

the points, or can decrease with increasing separation bétere,r- andr . refer to the greater and the smaller|of
tween the points in an oscillatory manner. Suppose first thadind|r’|, respectivelyj,(x) and hl(l)(x) are spherical Bessel
the cross-spectral density of the source is a monotonic funcand spherical Hankel functions of the first kind and of order
tion, which decreases with increasing distance between the and Y,,(8,¢) are spherical harmonics. On substituting
points. Suppose, further, that at every frequencyhe typi-  from Eq.(19) into Eq.(18) and using Eq(20), we obtain for
cal inverse absorption lengtf(w) is much greater than the the spectral degree of coherence the expression

typical wave numbek(w), i.e., y(w)>k(w), so that, as is
seen from Eq(14), gp(X) is also a monotonically decreasing (3) _sin(k|ry—ry))
function of the separation between the points. It then follows My (rl’rz'w)_—k|f1—fz|
at once from Eq(13) that the spectral degree of coherence of

the wave field will not display an oscillatory behavior. On which agrees with thaniversalform of the field correlations
the other hand, iV,(|x|) decreases with increasing distancederived by a different method in Re8].

between the points in an oscillatory manner, and the inverse An advantage of our approach is that the two-dimensional
absorption lengthy(w) is of the same order of magnitude as case can be treated similarly. Indeed, it follows at once from
k(w), it follows from Eq. (13) that the spectral degree of Egs.(18) that

coherence of the wave field may exhibit spatial oscillations.

This heuristic argument shows why the presence of absorp- 92(x) =R H{(K[X))1, (22

tion leads to a different functional form of the spectral degree

of coherence of the field, depending on a particular relatiotvhere HiP(x) is the Hankel function of the first kind and
among the parameters characterizing propagation of the fielgero order. We recall that the Green’s function of the two-

(21)

in the medium. dimensional reduced wave equatior 15]
i
ll. UNIVERSAL FORM OF THE SPECTRAL DEGREE OF Gyry,z,0)=— ~HOKIr —15)). 23)
COHERENCE OF THE FIELD GENERATED BY A 4

STATISTICALLY ISOTROPIC SOURCE ) 1 ) )
The Hankel functiorH{M(x) may be expanded in the series

We will now study the case when the dissipation in the[cf. formula 8.5312) of Ref. [16]]
medium is very weak, i.e, whep<k, and the fluctuating
source is statistically isotropic. In this case, the general ex- ~ , ,
pression(13) reduces to Hél’(kIr—r’|)=me Im(kr <) H{ (kro)em@=¢"),

(24)

J dR R"lwp(R)J dQrgp(R—T)
0 where J,(X) is the Bessel function of the first kind and of

D
G (r0)=— L ’ orderm. On substituting from Eqs(22) and (24) into Egs.
J; dR R Wp(R)f dQrgp(R) (17) and(18), one finds that the spectral degree of coherence
17 of the two-dimensional wave field generated by a two-
dimensional homogeneous, isotropic source has the simple
and the functiorgp(x), defined by Eq(14), becomes form

singk|x|) in three dimensions p&(r1,12,0)=Jg(K[r1—ry)). (25)
go(x)=1 Jo(kIx|)  intwo dimensions (18 This result demonstrates that the field correlations produced
cogk|x|) in one dimension. by a statistically isotropic source in a space of two dimen-

. o ) . ) sions have also a universal form.
Let us first consider in more detail three-dimensional wave |t js seen from Egs(21) and (25) that

fields. In this case,
o pP(r1,12,0)=Colm[Gp(ry,rz,0)],  (26)

g3(x)=47-rImGg(|x|,w)=47rIm( ) (19

47X where the numerical factd€y, is
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Am/k in three dimensions half spacez< 0, was considered if22]. It was demonstrated
(270 in that paper that at certain frequencies the spectral coher-
ence length of the field in the near zone may be much
Equation(26) demonstrates that thsructureof field corre- smallerthar_l the V\_/avelength of the radiation. The difference
between this particular system and the class of systems that

lations within a fluctuating, statistically isotropic, nonabsorb- h died in thi has | iin in the bound
ing medium is determined entirely by the propagation propW€ Nave studied in this paper has its origin in the boundary

erties of the medium, i.e, by its Green'’s function, and not bycondltlk:)ns. The pre?err:ce of th? l?ounc_Jar—y(} T}Ot only af-
any particular source distribution. Hence, the universality of €CtS the structure of the Green’s function of the system con-

the field correlations is a property shared by all such volumsidered in Ref[22], but also breaks the statistical isotropy of

and surface wave fields. We mention that our general trealt_he system. As a result the structure of the field correlations
no longer universal. The remarkably short spectral corre-

ment incorporates some well-known results as special case:é. | h cular T ;
blackbody radiatior}10,18 and the field correlations within atlon_ ength at a particular frequency 0}’”0'['2‘2] can be

a o-correlated primary spherical source of radius that isSXPlained by an anomalously small Beer's absorption length
much greater than the wavelendttf]. at that freq_uency. . , . .

A detailed analysis of Eq(17) together with Eq.(18) Correlation properties of the fields driven by stochastic
indicates that the spectral degree of coherence of oneources have also been studied in connection with the theory
dimensional wave fields does not have a universal function f hor:nogeneogs hydro?yr_lamlc ;urﬁme'{fe]: Inf_p?(;twu-
form. This nonuniversality may appear surprising, but it can@"» 1€ two-point correlations of the velocity fields were

be understood by examining the implications of the defini-Shown to acquire certain universal properties in the so-called

tion (16) of a homogeneous, statistically isotropic source.N€rtial range of spatial scales, where one can neglect the

Equation(16) implies that the cross-spectral density of the'r1f|uence of viscosity. However, ur_1I|ke the linear wave equa-
source is invariant with respect t¢i) rotations in a tion that we have discussed in this paper, the hydrodynamic

D-dimensional space ar{d) inversion ofr , andr, about the equations are inherently nonlinear. The latter circumstance

origin. Since both these operations are possible in three- arfyécludes a detailed analytical calculation of the second-
two-dimensional spaces, but not in one-dimensional spac rder correlation function of the fields associated with homo-

where rotations do not exist, the statistical isotropy is a strin9eneous turbulence.

gent enough condition to yield universality only for two- and In summary, we have !nvestlga_ted in this paper the form
three-dimensional systems of spectral cross-correlation functions of scalar wave fields

generated by fluctuating sources in homogeneous dissipative
media. We have found that there is a general form of the
IV. DISCUSSION AND SUMMARY spectral degree of coherence of such wave fields, and we

To understand better the results of the present paper, of@&ve shown that, when the wave field is generated by a ho-
should keep in mind the following circumstance. The univer-mogeneous, statistically isotropic source in a transparent, ho-
sality of the field correlations, which we have explored, oc-mogeneous medium, the correlation properties of such a field
curs only if the source fluctuations are statistically homogeareindependenbof the nature of the source distribution, and
neous and isotropic in a space of tmmedimensionality as are determined by the imaginary part of the Green’s function
that of the generated wave field. For instance, the surfacgf the system. We also explained the breakdown of such a
waves have universal correlation properties if the generatingniversality in one spatial dimension. Finally, only certain
source is statistically isotropic in two-dimensional spaceSecond-order correlation properties of homogeneous, statisti-
This situation can be compared with some other cases th&glly isotropic fields have been addressed in this paper.
were previously consideref20,21]. In particular, in Ref. Whether universal properties also exist for higher-order field
[20], the correlations of the fields generated by two-correlations is an open guestion.
dimensional, statistically homogeneous, Lambertian sources,
radia_\ting into the three-dimensional half spag:eo, were ACKNOWLEDGMENTS
studied. It has been demonstrated that, provided evanescent
components of the field may be neglected, such a source is This research was supported by the U.S. Air Force Office
statistically isotropic in the source plare=0. It can be of Scientific Research under Grant No. F49260-96-1-0400,
readily shown, however, that the fields produced by suctand by the Engineering Research Program of the Office of
sources donot exhibit universal correlation properties. A Basic Energy Sciences at the U. S. Department of Energy
similar conclusion holds for a one-dimensional Lambertianunder Grant No. DE-Fg02-90 ER 14119.
source radiating into the half spagze-0, which was inves-
tigated in Ref[21].

Another property shared by the universal forms of the
spectral degree of coherence of volume and surface wave
fields is worth noting. Equation®1) and (25) indicate that We consider the integral
the spectral coherence length of the field correlations ke
order of the wavelength. On the other hand, emission of light 4Pk .
into the half spacez>0 by a 3D thermal source located |D:J € _ (A1)
within a homogeneous conducting medium that occupies the (27)P |k?—n?(w)w?/c?|?

Cp= . . .
P l4 in two dimensions.

APPENDIX: EVALUATION OF THE INTEGRAL
IN EQ. (11)
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Let us first study the cade =3. On performing the elemen- H(()z)(z)zjo(z)—iNo(z), (A6b)
tary angular integration, EqA1) reduces to
where Jo(z) and Ny(z) are the Bessel and Neumann func-
ksm(k|x|) tions, respectively. We also make use of the following prop-
l3= 2w2|x|f erties of Hankel functiongcf. Egs. 9.1.39 of Ref24]):

n?(w)w?/c?|?
HP(z)=—e™HM(e'"2), (A73)

foc ke'klx‘
—_ dk . (A2 . .
(2m)%i|x| )= |k®—n?(w)w?/c?|? H(V(el"z)=—e 17"H2)(2). (A7b)

Sincee* ¥ is an analytic function ok in the upper half plane  On substituting into Eq(A5) from Eq. (A6) and using Egs.
of the complexk plane, the integral in EQA2) can be evalu- (A7), one can express the integral in E45) as
ated in the complex plane by closing the contour of integra-
tion in the upper half plane and applying the residue theo- Jx dk  kH{(K|x))

)=

rem. One readily finds that A () I 18

" sin(k|x
l3=— € r:i | |) A (A3) BecauseHgl)(z) is analytic inz in the upper half of the
4mylel KX complexz plane, one can close the contour of integration in
that half plane and, on performing the integration, one ob-

where, as before¢’ denotes the real part of the complex | X
tains forl, the expression

dielectric constant.

The evaluation of the corresponding integral in 2D is -
slightly more complicated. We first carry out the angular in- I2=ﬁ[Hgl)(§|x|)— HM(— %X (A9)
tegration with the aid of the integral representation for Bessel 2e"w?lc

functions[16] [formula 8.411, viz., _ _
Here€” stands, as before, for the imaginary part of the com-

2rd ¢ ) plex dielectric constarg, and{ is the complex wave number
Jo(x)= fo Zexpﬂx COS¢h). (A4) " defined below Eq(15) of the text.
The integral for the one-dimensional cagg= 1) can be
The integral in Eq(A1), with D=2, then reduces to evaluated directly with the help of the residue theorem. One
finds that
< dk k Jo(K|X|)
=| =— . A5 I
: fo 27 kK2~ n*(w) w’Ic?? (A9 P cos{k|x| b12), (A10)
2(|e))*yw
Let us now recall the definitions of the Hankel functions of
the first and second kinds, where ¢ is the phase lag defined in the text below Ed$).
W _ Finally, on combining Eqs(A3), (A9), and(A10), we arrive
Hg '(2)=Jo(2) +iNo(2), (ABa)  at the expressiofiLd) for gp(X).
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