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Universal structure of field correlations within a fluctuating medium

Sergey A. Ponomarenko and Emil Wolf
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~Received 18 May 2001; published 11 December 2001!

We study the structure of the second-order correlation function of scalar wave fields, which are generated by
statistically stationary sources, fluctuating within a homogeneous dissipative medium. We derive a closed-form
analytical expression for the spectral degree of coherence of the wave field. If the dissipation in the medium is
sufficiently small, and the source fluctuations are statistically isotropic, the degree of spatial coherence of the
field produced by any such source is shown to be proportional to the imaginary part of the Green’s function of
the system, with a proportionality factor depending on the dimensionality of the field. The result holds for wave
fields in both three and two spatial dimensions, but not in one dimension. We discuss the physical nature of
such universal forms of the spectral degree of coherence.
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I. INTRODUCTION

Wave fields, which are generated within a homogene
medium by a statistically stationary fluctuating source,
ubiquitous in physics. In electrodynamics, they are ass
ated with the electromagnetic field generated in a medium
the fluctuating polarization@1,2#. Similar systems are en
countered in acoustics, in connection with sound waves p
duced by the fluctuating density of a medium. It should
mentioned that the dimensionality of the space of the w
field need not be limited to three. Thus, electromagne
waves, which propagate on a surface and decay expo
tially in the direction normal to this surface@3#, hydrody-
namic waves on the surface of a fluid, and cylindrical aco
tic waves @4# serve as examples of two-dimensional wa
fields which can be excited by surface currents or mechan
forces, for example. A vibrating string@5# and a transmission
line @6# are driven one-dimensional wave fields.

Since so many different physical systems can be
scribed within the framework of a single model, it is instru
tive to study general statistical properties of such a mode
natural question arises regarding the relation between
correlation functions of the wave fields and those of the fl
tuating sources that generate these fields. The propertie
the second-order correlation function of a field are of ma
importance for the understanding of many statistical p
nomena in condensed matter theory@7#. The structure of the
second-order correlation function of scalar wave fields p
duced by statistically stationary sources in a thr
dimensional homogeneous medium was considered in
@8#. In that paper, it was demonstrated that, provided
dissipation in the medium is negligible, the spectral deg
of coherence of the wave field has the same functional fo
regardless of the properties of the source, provided its fl
tuations are statistically isotropic. This surprising result w
further discussed in Ref.@9#. However, the approach of Re
@8# relies heavily on some particular properties of the thr
dimensional Green’s function of the system in configurat
space. This feature of the method makes it difficult to dr
conclusions about theuniversalproperties of the spectral de
gree of coherence of wave fields that are shared by w
fields of differentspatial dimensionality. Another open que
1063-651X/2001/65~1!/016602~6!/$20.00 65 0166
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tion is the influence of dissipation in the medium on t
nature of the field correlations.

In the present paper, we address these questions by
sidering the second-order correlations of the wave fields g
erated by statistically stationary sources, which fluctuate
D-dimensional (D51, 2, or 3!, unbounded, homogeneou
dissipative medium. We derive a general analytical expr
sion for the spectral degree of coherence of the wave fiel
terms of the cross-spectral density of the fluctuating sou
We then show that if~1! the medium is nonabsorbing,~2! the
source fluctuations are statistically isotropic, and~3! the di-
mensionality of the space is two and three, the spectral
gree of coherence of such a wave field is given by auniver-
sal function, which is proportional to the imaginary part o
the Green’s function of the system. We briefly discuss w
such universality does not exist for one-dimensional wa
fields nor for any wave fields in the presence of significa
dissipation in the medium. Unlike the well-known expre
sions for the second-order correlations of electromagn
fields due to thermal fluctuations@2,10#, our results hold for
any linear wave field, which may be far from thermal equ
librium.

II. GENERAL EXPRESSION FOR THE SPECTRAL
DEGREE OF COHERENCE OF THE WAVE FIELD

Consider a statistical ensemble$U(r ,v)e2 ivt% of strictly
monochromatic, scalar wave fields@11,12# all at the same
frequencyv. The propagation of the field is governed by th
inhomogeneous wave equation

F¹21n2~v!
v2

c2 GU~r ,v!524pr~r ,v!. ~1!

Here,$r(r ,v)% is the ensemble of fluctuating source densi
that produce such a field, andn(v) is the ~generally com-
plex! refractive index of the medium@13#. The second-order
statistical properties of the source and of the wave field m
be specified by the cross-spectral density functions

Wr~r1 ,r2 ,v!5^r* ~r1 ,v!r~r2 ,v!& ~2!
©2001 The American Physical Society02-1
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and

WU~r1 ,r2 ,v!5^U* ~r1 ,v!U~r2 ,v!&, ~3!

where the angular brackets denote the average over the
tistical ensembles of realizations of the source and of
field. We introduce the spectral degree of coherence of
wave field by the expression@14#

mU~r1 ,r2 ,v!5
WU~r1 ,r2 ,v!

AWU~r1 ,r1 ,v!AWU~r2 ,r2 ,v!
. ~4!

Because of the statistical homogeneity of the source fluc
tions, it is convenient to work in Fourier space. Let

Ũ~k,v!5E dDr U ~r ,v!e2 ik•r, ~5!

and

r̃~k,v!5E dDr r~r ,v!e2 ik•r ~6!

be theD-dimensional Fourier transforms of the wave fie
and of the source density, respectively. It follows at on
from Eq.~1! and from definitions~5! and~6! that the Fourier
transforms of the wave fieldU(r ,v) and of the source den
sity r(r ,v) are related by the expression

Ũ~k,v!5
4pr̃~k,v!

k22n2~v!v2/c2
. ~7!

The statistical homogeneity of the source, which we ha
assumed, implies that

Wr~r1 ,r2 ,v![Wr~r ,v!, ~8!

where r5r12r2. On introducing the 2D-dimensional Fou-
rier transform of the cross-spectral densityW̃r(k1 ,k2 ,v) of
the fluctuating source by the expression

Wr~r1 ,r2 ,v!5E dDk1

~2p!DE dDk2

~2p!D
ei (k1•r11k2•r2)

3W̃r~k1 ,k2 ,v!, ~9!

condition ~8! is readily seen to be equivalent to the relatio

W̃r~k1 ,2k2 ,v!5~2p!Dd~k12k2!^ur̃~k1 ,v!u2&, ~10!

whered(k) is theD-dimensional Dirac delta function.
On substituting from Eq.~7! into Eq. ~3! and taking the

ensemble average with the aid of Eqs.~2! and ~10! and also
making use of Eq.~9!, we obtain for the cross-spectral de
sity of the wave field the expression
01660
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WU~r ,v!5~4p!2E dDR Wr~R!

3E dDk

~2p!D

eik•(R2r )

uk22n2~v!v2/c2u2
. ~11!

It follows at once from Eq.~8! and from the definition~4! of
the spectral degree of coherence of the field that

mU~r ,v!5
WU~r ,v!

WU~0,v!
. ~12!

The integral in Eq.~11! can be evaluated explicitly by a
straightforward though somewhat tedious calculation o
lined in the Appendix. The result is

mU
(D)~r ,v!5

E dDR Wr~R!gD~R2r !

E dDR Wr~R!gD~R!

, ~13!

where the functiongD(x) characterizing the propagatio
properties of the medium is

gD~x!5H sinc~kuxu!e2guxu in three dimensions

H0
(1)~zuxu!2H0

(1)~2z* uxu! in two dimensions

cos~kuxu2f/2!e2guxu in one dimension.
~14!

Here,

k~v!5ve8~v!/cue~v!u1/2 ~15a!

and

g~v!5ve9~v!/cue~v!u1/2 ~15b!

are the real and imaginary parts, respectively, of the comp
wave numberz(v)5k(v)1 ig(v), associated with the fre
quency v. Further, e(v)5e8(v)1 i e9(v) is the complex
dielectric constant at frequencyv. The generally complex
refractive indexn(v)5Ae(v). The ‘‘phase lag’’f(v) is
defined by the expressionf(v)5arctan@e9(v)/e8(v)#. In Eq.
~14!, sinc(x)[sin(x)/x @15#, andH0

(1)(x) is the Hankel func-
tion of the first kind and of zero order.

Expressions~13! and ~14! provide a closed-form repre
sentation for the spectral degree of coherence of the w
field in terms of the cross-spectral density of a statistica
homogeneous source. We emphasize that unlike the me
of Ref. @8#, which permits the treatment of only three
dimensional wave fields without absorption, our approa
makes it possible to study wave fields in dissipative media
any spatial dimensionality. However, a detailed analysis
Eqs.~13! and~14!, reveals that if, dissipation in the medium
is non-negligible, the correlation properties of the wa
fields do, in general, depend on those of the driving sourc
even if the sources are statistically isotropic. By astatisti-
2-2
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cally isotropic source we mean, of course, a source wh
cross-spectral density depends onr1 andr2 only through the
distanceur12r2u, ie.,

Wr~r1 ,r2 ,v![Wr~ ur12r2u,v!. ~16!

In order to gain some insight into the influence of dissipat
on the universality of the field correlations, we may note t
in the presence of appreciable dissipation~absorption! the
spectral degree of coherence of the field at any pair of po
either can be a monotonic function of the distance betw
the points, or can decrease with increasing separation
tween the points in an oscillatory manner. Suppose first
the cross-spectral density of the source is a monotonic fu
tion, which decreases with increasing distance between
points. Suppose, further, that at every frequencyv, the typi-
cal inverse absorption lengthg(v) is much greater than th
typical wave numberk(v), i.e., g(v)@k(v), so that, as is
seen from Eq.~14!, gD(x) is also a monotonically decreasin
function of the separation between the points. It then follo
at once from Eq.~13! that the spectral degree of coherence
the wave field will not display an oscillatory behavior. O
the other hand, ifWr(uxu) decreases with increasing distan
between the points in an oscillatory manner, and the inve
absorption lengthg(v) is of the same order of magnitude a
k(v), it follows from Eq. ~13! that the spectral degree o
coherence of the wave field may exhibit spatial oscillatio
This heuristic argument shows why the presence of abs
tion leads to a different functional form of the spectral deg
of coherence of the field, depending on a particular relat
among the parameters characterizing propagation of the
in the medium.

III. UNIVERSAL FORM OF THE SPECTRAL DEGREE OF
COHERENCE OF THE FIELD GENERATED BY A

STATISTICALLY ISOTROPIC SOURCE

We will now study the case when the dissipation in t
medium is very weak, i.e, wheng!k, and the fluctuating
source is statistically isotropic. In this case, the general
pression~13! reduces to

mU
(D)~r ,v!5

E
0

`

dR RD21Wr~R!E dVRgD~R2r !

E
0

`

dR RD21Wr~R!E dVRgD~R!

,

~17!

and the functiongD(x), defined by Eq.~14!, becomes

gD~x!5H sinc~kuxu! in three dimensions

J0~kuxu! in two dimensions

cos~kuxu! in one dimension.

~18!

Let us first consider in more detail three-dimensional wa
fields. In this case,

g3~x!54p Im G3~ uxu,v!54p ImS eikuxu

4puxu D , ~19!
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whereG3(r1 ,r2 ,v) is the Green’s function of the 3D sys
tem. This Green’s function can be represented by the se
@cf. formula 8.531~1! of Ref. @16##

eikur2r8u

4pur2r 8u
5 ik (

l 50

`

j l~kr,!hl
(1)~kr.!

3 (
m52 l

l

Ylm* ~u8,f8!Ylm~u,f!. ~20!

Here, r . and r , refer to the greater and the smaller ofur u
and ur 8u, respectively;j l(x) andhl

(1)(x) are spherical Besse
and spherical Hankel functions of the first kind and of ord
l, and Ylm(u,f) are spherical harmonics. On substitutin
from Eq.~19! into Eq.~18! and using Eq.~20!, we obtain for
the spectral degree of coherence the expression

mU
(3)~r1 ,r2 ,v!5

sin~kur12r2u!
kur12r2u

~21!

which agrees with theuniversalform of the field correlations
derived by a different method in Ref.@8#.

An advantage of our approach is that the two-dimensio
case can be treated similarly. Indeed, it follows at once fr
Eqs.~18! that

g2~x!5Re@H0
(1)~kuxu!#, ~22!

whereH0
(1)(x) is the Hankel function of the first kind an

zero order. We recall that the Green’s function of the tw
dimensional reduced wave equation is@17#

G2~r1 ,r2 ,v!52
i

4
H0

(1)~kur12r2u!. ~23!

The Hankel functionH0
(1)(x) may be expanded in the serie

@cf. formula 8.531~2! of Ref. @16##

H0
(1)~kur2r 8u!5 (

m52`

`

Jm~kr,! Hm
(1)~kr.!eim(f2f8),

~24!

whereJm(x) is the Bessel function of the first kind and o
order m. On substituting from Eqs.~22! and ~24! into Eqs.
~17! and~18!, one finds that the spectral degree of cohere
of the two-dimensional wave field generated by a tw
dimensional homogeneous, isotropic source has the sim
form

mU
(2)~r1 ,r2 ,v!5J0~kur12r2u!. ~25!

This result demonstrates that the field correlations produ
by a statistically isotropic source in a space of two dime
sions have also a universal form.

It is seen from Eqs.~21! and ~25! that

mU
(D)~r1 ,r2 ,v!5CDIm@GD~r1 ,r2 ,v!#, ~26!

where the numerical factorCD is
2-3
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CD5H 4p/k in three dimensions

4 in two dimensions.
~27!

Equation~26! demonstrates that thestructureof field corre-
lations within a fluctuating, statistically isotropic, nonabso
ing medium is determined entirely by the propagation pr
erties of the medium, i.e, by its Green’s function, and not
any particular source distribution. Hence, the universality
the field correlations is a property shared by all such volu
and surface wave fields. We mention that our general tr
ment incorporates some well-known results as special ca
blackbody radiation@10,18# and the field correlations within
a d-correlated primary spherical source of radius that
much greater than the wavelength@19#.

A detailed analysis of Eq.~17! together with Eq.~18!
indicates that the spectral degree of coherence of o
dimensional wave fields does not have a universal functio
form. This nonuniversality may appear surprising, but it c
be understood by examining the implications of the defi
tion ~16! of a homogeneous, statistically isotropic sour
Equation~16! implies that the cross-spectral density of t
source is invariant with respect to~i! rotations in a
D-dimensional space and~ii ! inversion ofr1 andr2 about the
origin. Since both these operations are possible in three-
two-dimensional spaces, but not in one-dimensional sp
where rotations do not exist, the statistical isotropy is a st
gent enough condition to yield universality only for two- an
three-dimensional systems.

IV. DISCUSSION AND SUMMARY

To understand better the results of the present paper,
should keep in mind the following circumstance. The univ
sality of the field correlations, which we have explored, o
curs only if the source fluctuations are statistically homo
neous and isotropic in a space of thesamedimensionality as
that of the generated wave field. For instance, the sur
waves have universal correlation properties if the genera
source is statistically isotropic in two-dimensional spa
This situation can be compared with some other cases
were previously considered@20,21#. In particular, in Ref.
@20#, the correlations of the fields generated by tw
dimensional, statistically homogeneous, Lambertian sour
radiating into the three-dimensional half spacez.0, were
studied. It has been demonstrated that, provided evanes
components of the field may be neglected, such a sourc
statistically isotropic in the source planez50. It can be
readily shown, however, that the fields produced by s
sources donot exhibit universal correlation properties.
similar conclusion holds for a one-dimensional Lambert
source radiating into the half spacez.0, which was inves-
tigated in Ref.@21#.

Another property shared by the universal forms of t
spectral degree of coherence of volume and surface w
fields is worth noting. Equations~21! and ~25! indicate that
the spectral coherence length of the field correlations isof the
order of the wavelength. On the other hand, emission of lig
into the half spacez.0 by a 3D thermal source locate
within a homogeneous conducting medium that occupies
01660
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half spacez,0, was considered in@22#. It was demonstrated
in that paper that at certain frequencies the spectral co
ence length of the field in the near zone may be mu
smaller than the wavelength of the radiation. The differen
between this particular system and the class of systems
we have studied in this paper has its origin in the bound
conditions. The presence of the boundaryz50 not only af-
fects the structure of the Green’s function of the system c
sidered in Ref.@22#, but also breaks the statistical isotropy
the system. As a result the structure of the field correlati
is no longer universal. The remarkably short spectral co
lation length at a particular frequency found in@22# can be
explained by an anomalously small Beer’s absorption len
at that frequency.

Correlation properties of the fields driven by stochas
sources have also been studied in connection with the th
of homogeneous hydrodynamic turbulence@23#. In particu-
lar, the two-point correlations of the velocity fields we
shown to acquire certain universal properties in the so-ca
inertial range of spatial scales, where one can neglect
influence of viscosity. However, unlike the linear wave equ
tion that we have discussed in this paper, the hydrodyna
equations are inherently nonlinear. The latter circumsta
precludes a detailed analytical calculation of the seco
order correlation function of the fields associated with hom
geneous turbulence.

In summary, we have investigated in this paper the fo
of spectral cross-correlation functions of scalar wave fie
generated by fluctuating sources in homogeneous dissipa
media. We have found that there is a general form of
spectral degree of coherence of such wave fields, and
have shown that, when the wave field is generated by a
mogeneous, statistically isotropic source in a transparent,
mogeneous medium, the correlation properties of such a fi
are independentof the nature of the source distribution, an
are determined by the imaginary part of the Green’s funct
of the system. We also explained the breakdown of suc
universality in one spatial dimension. Finally, only certa
second-order correlation properties of homogeneous, sta
cally isotropic fields have been addressed in this pa
Whether universal properties also exist for higher-order fi
correlations is an open question.
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APPENDIX: EVALUATION OF THE INTEGRAL
IN EQ. „11…

We consider the integral

I D5E dDk

~2p!D

eik•x

uk22n2~v!v2/c2u2
. ~A1!
2-4



-

ra
eo

x

is
in
s

o

c-
p-

in
ob-

m-
r

ne

UNIVERSAL STRUCTURE OF FIELD CORRELATIONS . . . PHYSICAL REVIEW E 65 016602
Let us first study the caseD53. On performing the elemen
tary angular integration, Eq.~A1! reduces to

I 35
1

2p2uxu
E

0

`

dk
k sin~kuxu!

uk22n2~v!v2/c2u2

5
1

~2p!2i uxu
E

2`

`

dk
k eikuxu

uk22n2~v!v2/c2u2
. ~A2!

Sinceeikuxu is an analytic function ofk in the upper half plane
of the complexk plane, the integral in Eq.~A2! can be evalu-
ated in the complex plane by closing the contour of integ
tion in the upper half plane and applying the residue th
rem. One readily finds that

I 35
e8

4pgueu
sin~kuxu!

kuxu
e2guxu, ~A3!

where, as before,e8 denotes the real part of the comple
dielectric constante.

The evaluation of the corresponding integral in 2D
slightly more complicated. We first carry out the angular
tegration with the aid of the integral representation for Bes
functions@16# @formula 8.411#, viz.,

J0~x!5E
0

2pdf

2p
exp~ ix cosf!. ~A4!

The integral in Eq.~A1!, with D52, then reduces to

I 25E
0

` dk

2p

k J0~kuxu!

uk22n2~v!v2/c2u2
. ~A5!

Let us now recall the definitions of the Hankel functions
the first and second kinds,

H0
(1)~z!5J0~z!1 iN0~z!, ~A6a!
-

s

nd

s.

01660
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H0
(2)~z!5J0~z!2 iN0~z!, ~A6b!

whereJ0(z) and N0(z) are the Bessel and Neumann fun
tions, respectively. We also make use of the following pro
erties of Hankel functions~cf. Eqs. 9.1.39 of Ref.@24#!:

Hn
(2)~z!52eipnHn

(1)~eipz!, ~A7a!

Hn
(1)~eipz!52e2 ipnHn

(2)~z!. ~A7b!

On substituting into Eq.~A5! from Eq. ~A6! and using Eqs.
~A7!, one can express the integral in Eq.~A5! as

I 25E
2`

` dk

4p

k H0
(1)~kuxu!

uk22n2~v!v2/c2u2
. ~A8!

BecauseH0
(1)(z) is analytic in z in the upper half of the

complexz plane, one can close the contour of integration
that half plane and, on performing the integration, one
tains for I 2 the expression

I 25
p

2e9v2/c2
@H0

(1)~zuxu!2H0
(1)~2z* uxu!#. ~A9!

Heree9 stands, as before, for the imaginary part of the co
plex dielectric constante, andz is the complex wave numbe
defined below Eqs.~15! of the text.

The integral for the one-dimensional case (D51) can be
evaluated directly with the help of the residue theorem. O
finds that

I 15
e2guxu

2~ ueu!1/2gv2/c2
cos~kuxu2f/2!, ~A10!

wheref is the phase lag defined in the text below Eqs.~15!.
Finally, on combining Eqs.~A3!, ~A9!, and~A10!, we arrive
at the expression~14! for gD(x).
p-
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