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Universal self-similar asymptotic behavior of
optical bump spreading in random medium atop
incoherent background
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We demonstrate theoretically that the average spatial inten-

sity profile of any partially coherent optical beam, composed

of a finite-power bright intensity bump atop a fluctuating

background, evolves into a universal self-similar Gaussian

shape upon long-term propagation in a statistically homo-

geneous, isotropic linear random medium. The result

depends neither on the degree of the background spatial

coherence nor on the strength of the medium turbulence. To

our knowledge, this is the first demonstration of universal

self-similar asymptotics in linear random media. © 2020
Optical Society of America

https://doi.org/10.1364/OL.385246

Introduction. Studies of laser beam propagation through lin-
ear random media have received fresh impetus owning to the
advancement of modern day free-space optical communica-
tion protocols that involve laser beams propagating through
atmospheric turbulence [1–3]. To date, there exists an exten-
sive body of research on propagation of coherent and partially
coherent beams through atmospheric turbulence; for a recent
review, see, e.g., [4]. Despite impressive progress though, there
are but a handful of publications [5–7] demonstrating any
generic characteristics of laser beams, independent of their
initial spatial profiles or source states of coherence, on beam
propagation in random media. In particular, the authors of
Ref. [5] demonstrated that the root mean square (rms) width
of any beam generated by a spatially coherent source obeys a
universal propagation law in a statistically homogenous, iso-
tropic random medium, with the long-term rms evolution being
determined solely by the medium turbulence. The result of [5]
was later extended to the beams produced by partially coherent
sources [6,7].

Yet, the universality properties discussed in Refs. [6,7] are
limited to statistically homogeneous laser beams, such that
their degree of coherence at a pair of space points depends only
on the distance between the points. At the same time, several
classes of non-uniformly correlated statistical beams have been
theoretically proposed [8–11] and experimentally realized
[11–14]. These beams have attracted growing attention for
their unusual robustness against the adverse medium turbulence
effects [15]. In particular, dark and antidark diffraction free
beams, theoretically discovered in Ref. [9] and generated in the
lab in Ref. [14], have lately piqued researchers’ curiosity due to
their ability to nearly defy free-space diffraction over distances
that can be easily controlled [14,16,17]. These beams manifest
themselves as dips or bumps against statistically homogeneous
backgrounds. Several generalizations of such beams were pro-
posed [16,17], including, notably, white-light (polychromatic)
dark/antidark fields residing on an incoherent background [16].
These developments trigger a natural question: can bumps/dips
atop an incoherent background exhibit universal propagation
scenarios in linear random media?

In this Letter, we show that the average spatial profile of any
finite-power random intensity bump on a statistically homo-
geneous background asymptotically approaches a self-similar
Gaussian shape as the composite beam propagates in a sta-
tistically homogeneous, isotropic linear random medium. The
rms width of the universal self-similar asymptotics is determined
entirely by the medium turbulence. We stress that our result
is independent of either the optical source particulars or the
strength of the medium turbulence. We also emphasize that
the discovered universal asymptotic scenario comes about at
distances so long that the initial conditions at the source play no
role, yet so short that the paraxial approximation is still valid.
Thus, the discovered regime can be classified as self-similar

intermediate asymptotics in the sense elucidated in Ref. [18].
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Convolution representation in turbulent media. Let us start by
recalling some key properties of dark or antidark diffraction-free
beams. We demonstrated in Ref. [9] that the cross-spectral den-
sity of any partially coherent diffraction-free beam in free space
is necessarily of the form

W(r1, r2) = 8(r�) + 9(r+), (1)

where r stands for a radius vector in the plane transverse to
the beam axis z, and we introduced the difference and average
position variables as

r� = r1 � r2, r+ = (r1 + r2)/2. (2)

Notice that the average intensity reads

I (r) ⌘ W(r, r) = 8(0) + 9(r), (3)

where 9(r) represents the spatial profile of a “bump/dip”
against a constant “background” 8(0).

As a consequence of the cross-spectral density Hermiticity,
the arbitrary functions 8 and 9 obey the constraints

9⇤(r+) = 9(r+), 8⇤(�r�) = 8(r�). (4)

In addition, the cross-spectral density must be non-negative
definite, which is a nontrivial constraint, in general. One way
to satisfy it is to find a series expansion of W in terms of coher-
ent modes with nonnegative coefficients (modal weights).
Unfortunately, this can be accomplished analytically in only a
few cases [8,9]. Alternatively, we can express W in terms of the
angular spectra as

W(r�, r+) =
Z

d2
ke

ik·r�A8(k) +
Z

d2
qe

iq·r+A9(q), (5)

and in the case of bumps atop any background, the nonnegative
definiteness of W is guaranteed by the virtue of Bochner’s theo-
rem [19] for real nonnegative angular spectra, such that

A8(k) � 0; A9(q) � 0. (6)

Hereafter, we will focus on partially coherent bumps riding on a
fluctuating background.

Under the usual conditions of negligible backscattering, the
average intensity distribution of any beam in any transverse
plane, z � 0 in a statistically homogeneous, isotropic random
medium is given by [1]
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Here, 0
m

is a two-point correlation function of the random
phases introduced into each field realization due to the medium
fluctuations. For statistically homogeneous, isotropic medium
fluctuations, we have, under the most general conditions [1],
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where S

n

() is a spatial spectrum of the medium fluctuations,
and J0(x ) is a zero-order Bessel function of the first kind.

Assuming a partially coherent bump on a background at the
source,

W

(0)(r1, r2) = W

(0)(r�, r+) = 8(r�) + 9(r+), (9)

and transforming to the difference and average position
variables given by Eq. (2) in Eq. (7), we arrive at
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On substituting from Eq. (9) into Eq. (10), expressing the
medium correlation function via its Fourier transform through
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(11)
and using the integral representation of a 2D delta function as

�(kr/z) =
Z

d2
R

(2⇡)2 exp[ik(r · R)/z], (12)

we arrive, after elementary algebra, at the (arguably) elegant and
physically intuitive expression for the average intensity distribu-
tion of a propagated beam in the form

I (r, z) = I0 + k

2
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, (13)

where I0 = 8(0) is the average background intensity, and the
tilde denotes a Fourier transform in Eqs. (11) and (13).

Universal self-similar asymptotics. Equation (13) reveals the
physics of any random bump propagation through turbulence.
First, we notice that the first (background) term remains unaf-
fected by the turbulence, as is expected, because it is essentially
an incoherent plane wave. The second (bump) term is a con-
volution of the initial bump profile and a scaled correlation
function of the medium. Notice that, as is readily inferred from
Eq. (13), the composite beam intensity is determined entirely
by the medium turbulence, which is a direct consequence of
the source diffraction-free nature in the absence of the medium
fluctuations.

A brief inspection of the medium correlation function,
Eq. (8), reveals that at short propagation distances, it is
very flat, implying that its Fourier transform is nearly a
delta function. Indeed, as z ! 0, 0

m

(|r|, z) ! 1. Thus,
lim

z!0 (k/z)20̃
m

(kr/z, z) = (k2/z

2)�(kr/z) = �(r), yield-
ing a source bump profile in Eq. (13). On the other hand, at
long propagation distances, the medium correlation function
becomes very narrow, implying an extremely broad Fourier
transform. Hence, if we introduce the total power carried by
the bump,

1P =
Z

d2
r9(r), (14)

we conclude that at a long propagation distance, a bump of any
profile can be approximated as 9(r � r

0) ' 1P �(r � r

0), yield-
ing the asymptotic average intensity profile as
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Next, at sufficiently long propagation distances, only a small
spatial region around the beam axis contributes to 0

m

, implying
that the Bessel function in Eq. (8) can be expanded into a Taylor
series. Keeping only the leading orders, J0(x ) ' 1 � x

2/4, we
may approximate the correlation function by a Gaussian as
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where the medium correlation length �
c

(z) is defined by the
expression

� 2
c

(z) = 3
2⇡2

k

2
z

R 1
0 d3

S

n

()
. (17)

On taking a Fourier transform in Eq. (16), using Eq. (17), and
substituting into Eq. (15), we finally arrive at

I1(r, z) = I0 + 1P

⇡� 21(z)
exp
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� |r|2
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�

. (18)

Here, we introduce an rms width of the bump asymptotics by
the expression
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Equations (18) and (19) furnish a universal self-similar asymp-

totics of a finite-power bump of any initial profile and degree
of spatial coherence, propagating atop an incoherent back-
ground in a statistically homogeneous, isotropic linear random
medium. This is the key result of this Letter.

Two instructive conclusions can be drawn from Eqs. (18)
and (19). First, the rms width of the universal asymptotic profile
depends only on the turbulence strength, as it should. Second,
Eq. (19) gives

p
2 times the rms width derived in Ref. [6] for

statistically uniform beams. It follows that although the studied
random bumps defy diffraction in free space, they eventually
succumb to the medium turbulence and spread somewhat faster
than their statistically uniform counterparts in the long term.
This apparently represents a flip side of using the source that is
diffraction free in the absence of turbulence for optical commu-
nications through turbulence. Yet, the statistical bumps on an
incoherent background appear to be remarkably structurally
resilient to turbulence by yielding the universal self-similar
asymptotic profile over sufficiently long propagation distances.
We are unaware of any analogous results for conventional
statistically uniform beams.

The random bump evolution toward the universal self-
similar profile can be examined by evaluating its rms width
[3]. Incidentally, the evolution of the latter with z determines
a characteristic range of long enough distances over which our
asymptotics works for a given input beam profile. Assuming,
without loss of generality, the bump to be symmetric with
respect to the propagation axis, its rms width �

bp

(z) is defined as
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By energy conservation, the denominator is just the total
power carried by the bump:
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This can be formally obtained from Eq. (13) by interchang-
ing the integration order, shifting the integration variable, and
noticing that (k2/z
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Further, assuming the source profile is axially symmetric,
9(r) = 9(r ), we obtain
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Next, we evaluate numerically the rms width evolution of
the beams generated by a couple of random bump sources. In
our numerical calculations, we assume the medium to be the
turbulent atmosphere that is most relevant to free-space optical
communications. We apply the Kolmogorov–von Karman
model for the medium turbulence spectrum [1]:
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m
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where C

2
n

is a so-called structure constant, 
m

= 5.92/l0, and
0 = 4⇡/L0; l0 and L0 are the inner and outer scales of the tur-
bulence, respectively. We take C

2
n

= 0.5 ⇥ 10�13 m�2/3,
l0 = 0.1 m, and L0 = 1 m corresponding to the strong
fluctuation regime of the atmosphere [1,20].

Let us first consider a Gaussian bump of the initial width �0,
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The rms width behavior of the bump is illustrated in Fig. 1 in
a red curve, whereas the rms width of the universal self-similar
profile is shown in blue dots. We can infer at once from the figure
that the rms width of the Gaussian bump monotonously attains
the asymptotic spreading law of Eq. (19). This is not surpris-
ing, as an initially Gaussian bump is expected to maintain—
more or less—its Gaussian profile on propagation through
turbulence.

Let us now consider an initial bump profile with a long tail,

9(r) = 1P

2⇡

�0

(� 2
0 + r

2)
3/2 , (25)

Fig. 1. Rms width of a Gaussian bump propagating in atmospheric
turbulence as a function of propagation distance (solid red curve),
and rms width of the universal self-similar profile (blue dots). Rms
width at the source is 0.01 m. The parameters of the bump and the
turbulence are: �0 = 0.01 m, � = 532 nm, C

2
n

= 0.5 ⇥ 10�13 m�2/3,
l0 = 0.1 m, and L0 = 1 m.
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which has a manifestly non-Gaussian shape at the source. This is
a bona fide (nonnegative definite) bump because, as can be eas-
ily verified, its profile results from a Fourier transform of the real
nonnegative angular spectrum:

A(q) = 1P

2⇡
exp(��0|q|). (26)

Notice that the initial rms width of such a bump is infinite:
the bump has a very long tail indeed. We exhibit the rms evolu-
tion of the long-tail bump and that of the universal self-similar
profile in Fig. 2 in the solid red and dotted blue curves, respec-
tively. It can be inferred from the figure that the bump rms width
will initially decrease, attaining a minimum, followed by an
asymptotical approach toward �1(z). The region around the
minimum width is displayed in the inset to the figure in red
dots. This rms width behavior implies dramatic reshaping of
the bump spatial profile. To verify that the bump shape, not
just its rms width, approaches its self-similar asymptotics, we

Fig. 2. Rms width of a Lorentzian bump propagating in atmos-
pheric turbulence as a function of propagation distance (solid red
curve), and rms width of the universal self-similar profile (blue dots).
All parameters are the same as those in Fig. 1.

Fig. 3. Evolution of the normalized average intensity of a
Lorentzian bump (solid black curve) versus the self-similar asymp-
totic intensity (dashed red curve) on propagation in atmospheric
turbulence. All parameters are the same as those in Fig. 1.

show the evolution of the normalized intensity profile of the
bump in Fig. 3 at several propagation distances and compare it
with the universal self-similar asymptotic profile. It is seen in
the figure that the two profiles virtually coincide at the propa-
gation distance of 40 km for realistic atmospheric turbulence
conditions.

Conclusion. We examined the average intensity profile evo-
lution of random bumps on an incoherent background in
statistically homogeneous, isotropic linear random media. We
have shown that any such bump, carrying a finite power, evolves
asymptotically into a universal self-similar Gaussian. Our results
are independent of the spatial shape and coherence state of the
bump at the source, and they do not depend on the strength of
the medium turbulence. We expect our results to trigger further
interest in universal asymptotic properties of statistical beams
in random media as well as to inform any follow-up research on
optical communications through turbulent atmosphere.
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