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Abstract: We establish a general form of the cross-spectral density of statistical sources that
generate vortex preserving partially coherent beams on propagation through any linear ABCD
optical system. We illustrate our results by introducing a class of partially coherent vortex
beams with a closed form cross-spectral density at the source and demonstrating the beam vortex
structure preservation on free space propagation and imaging by a thin lens. We also show the
capacity of such vortex preserving beams of any state of spatial coherence to trap nanoparticles
with the refractive index smaller than that of a surrounding medium.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The concept of vortices was first introduced into optics by Coullet in 1989 [1] by analogy with the
naturally encountered vortices, such as tornados and ocean whirlpools. This work was followed
by a rigorous introduction of vortex-carrying optical beams with helicoidal wavefronts by Allen
and co-workers [2]. The introduced vortex beams were shown in [2] to carry orbital angular
momenta of m~ per photon where m is an integer known as a topological charge of the vortex.
This pioneering work has established a link between an optical vortex on the one hand and
the beam orbital angular momentum on the other, thereby having triggered a flurry of research
on vortex beams [3,4]. A multitude of noteworthy features of optical vortex beams have been
discovered to date. The latter include the phase singularity behavior of vortex beams; their
ability to transfer the orbital angular momentum to neutral particles, thereby enabling trapping
and tweezing the said particles, as well as an angular Doppler e�ect manifestation with vortex
endowed beams [5,6]. These remarkable characteristics of optical vortex beams serve as a basis
for their widespread applications to high-security and high-capacity quantum and classical optical
communications, quantum storage, nanostructure processing, and superresolution imaging [7–9],
to mention but a few relevant examples.

On the other hand, as the source coherence is reduced, fully spatially coherent vortex beams
can be converted into partially coherent vortex beams (PCVBs) [10,11]. In general, partially
coherent beams have been demonstrated to better resist ambient turbulence fluctuations than
do their fully coherent counterparts [12], and are useful for di�ractive imaging [13]. In this
connection, PCVBs have received much attention, in part due to their interesting propagation
properties such as self-shaping, self-reconstruction, and reduced turbulence-induced degradation
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and scintillations [10,11]. However, traditional partially coherent vortices, embedded within
Schell-model beams [14–16], lose their vortex structure on free space propagation, especially in
the low-coherence limit where their structural stability to random environment fluctuations is
the greatest. Hence a natural question arises: Is it possible to combine the advantages of low
spatial coherence, and hence the structural stability to ambient turbulence, and optical vortex
structure by generating PCVBs whose vortex structure is immune to beam evolution through
a linear ABCD system, including free space, at any spatial coherence level? Several groups
have proposed particular classes of PCVBs satisfying this requirement [17–19]. To the best of
our knowledge, however, no general approach to designing vortex preserving partially coherent
beams (PCBs) has been put forward to date. Nor have any applications of such beams been
explicitly discussed.

In this work, we establish, for the first time to our knowledge, a general form of the cross-spectral
density of PCVBs that maintain their vortex structure on propagation though any linear ABCD
optical system. In particular, we demonstrate how any such beam can be constructed using
coherent pseudo-modes. This, in general pseudo-mode, decomposition o�ers a direct path to the
laboratory realization of such beams [18]. We also introduce a class of vortex preserving partially
coherent beams described by the cross-spectral density in a closed form. We then calculate the
radiation forces due to the optical fields of such beams that enable nanoparticle trapping in the
beam cores.

2. General form of vortex preserving partially coherent beams

In the space-frequency domain, the cross-spectral density (CSD) is used to characterize the
second-order statistical properties of a PCB. To establish a generic form of vortex preserving
PCBs, we introduce the CSD of a random ensemble {U(⇢,!)} at the source as

W (0) (⇢1, ⇢2,!) = hU⇤ (⇢1,!)U (⇢2,!)i , (1)

where ⇢ = (⇢, ') is a radius vector in the transverse plane and the angle brackets denote ensemble
averaging. We construct the ensemble as follows

U (⇢, ') = eim'
’

n
cn mn (⇢), (2)

where m is an integer and we drop the frequency dependence for brevity hereafter. Further,
{ mn(⇢)} are, in general, pseudo-modes in the spirit of [20–25] as they can fail to form an
orthogonal set. Such pseudo-modes were shown to be instrumental for design and experimental
realization of novel classes of partially coherent beams [21–24,26–29] and for theoretical
explorations into statistical surface plasmon polaritons [30,31] as well as they were demonstrated
to provide insight into partially coherent beam propagation in linear graded-index media [32],
turbulent atmosphere [33], and uniaxial crystals [34]. Next, {cn} are random coe�cients with
the second-order statistical properties encapsulated by

hc⇤ncli = �n�nl. (3)

Here {�n � 0} are essentially non-negative modal weights of the Karhunen-Loève expansion
of the random field in terms of the pseudo-modes { mn}. The corresponding coherent-mode
decomposition follows at once from Eqs. (1) through (3) as

W (0) (⇢1, ⇢2) = eim('2�'1)
’

n
�n 

⇤
mn (⇢1) mn (⇢2). (4)
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The propagation properties of such beams through an ABCD optical system can be studied with
the help of the following extended Huygens-Fresnel di�raction integral formula

W(r1, r2, z) = k2

4⇡2B2

Ø
d2⇢1

Ø
d2⇢2W (0)(⇢1, ⇢2) exp

⇥
� ik

2B
�
A⇢2

1 � 2r1 · ⇢1 + Dr

2
1
� ⇤

⇥ exp
⇥ ik

2B
�
A⇢2

2 � 2r2 · ⇢2 + Dr

2
2
� ⇤

.
(5)

Here r = (r, �) = (x, y) is the transverse vector in any plane z � 0; k = 2⇡/� stands for the wave
number, with � denoting the carrier wavelength of light. It follows from Eqs. (4) and (5) that

W(r1, r2, z) =
’

n
�n 

⇤
mn(r1, z) mn(r2, z), (6)

where
 mn (r, z) = k

2⇡B

π
d2⇢ eim' mn (⇢) exp


ik
2B

⇣
A⇢2 � 2r · ⇢ + Dr

2
⌘�

. (7)

On performing the angular integration in the polar coordinates in Eq. (7) using the integral
representation of the Bessel function of the first kind and order m as

Jm(x) =
π 2⇡

0

d'
2⇡

exp(im' � ix cos '), (8)

we obtain, upon elementary algebra, the expression for a coherent mode field in any transverse
plane z � 0 in the form

 mn(r, �, z) =
✓

k
B

◆
exp

✓
ikDr2

2B

◆
eim� Rmn(r), (9)

where
Rmn (r) =

π 1

0
d⇢ ⇢ mn (⇢) Jm

✓
kr⇢
B

◆
exp

✓
ikA⇢2

2B

◆
. (10)

It follows at once from Eq. (9) that each coherent mode has a vortex phase in any z � 0 with
the same topological charge m and its radial profile Rmn(r) vanishes on the axis r = 0 for
any nonzero topological charge m>0 because of the factor Jm(kr⇢/z) in the integrand on the
right-hand side of Eq. (10). Hence, each mode carries a vortex with the same topological charge,
implying the overall beam is endowed with the optical vortex in any transverse plane. As a
consequence, each (pseudo-)mode maintains a dark notch in its intensity profile on propagation
through any linear ABCD system, thereby ensuring that the overall beam intensity possesses the
notch as well, which makes it a signature of any vortex-preserving PCVB.

We have now established the general form of the CSD, given by Eqs. (6), (9) and (10), of
a statistical source generating vortex endowed PCBs that maintain their vortex structure on
propagation through a generic ABCD optical system. Next, we proceed to introduce a class of
such beams with a closed form CSD at the source to illustrate our general results.

3. New class of vortex preserving statistical beams

Consider a class of radially sinc-correlated vortex (RSCV) beams with the cross-spectral density
in a closed form as

W (0)
sinc (⇢1, ⇢2) = I0(⇢1⇢2) |m |eim('2�'1) exp

"
�
(⇢2

1 + ⇢
2
2)

2�2
1

#
sinc

✓
⇢1 � ⇢2
�c

◆
, (11)



Research Article Vol. 28, No. 6 / 16 March 2020 / Optics Express 8478

where I0 is a positive normalization constant; �I and �c denote the beam width and coherence
width of any RSCV beam, respectively. Using the following sinc-function representation [35]

sinc (x � y) = ⇡pxy

1’
n=0

(n + 1/2) Jn+1/2 (x) Jn+1/2 (y), (12)

we can easily read o� the pseudo-modes to be

 mn (⇢, ') = ⇢ |m |�1/2eim'e�⇢
2/ 2�2

I Jn+1/2 (⇢/�c) , (13)

and the set of eigenvalues {�n} reads as

�n = ⇡�cI0(n + 1/2). (14)

On substituting from Eqs. (13) and (14) into Eq. (7), we obtain after somewhat tedious algebra,
the pseudo-modes of an RSCV beam at the propagation distance z within a linear ABCD optical
system, with the following analytical expression for Rmn (r)

Rmn (r) = (kr/B)mh�(m+|m|+n+2)/2

�n+1/2
c 2m+n+3/2�(n+3/2)

1Õ
s=0

�[s+(m+ |m |+n+2)/2]
s!�(s+n+1)

⇣
� k2r2

4B2h

⌘s

⇥F
�
�s,�n � s; n + 3/2; B2/k2r2�2

c
�
.

(15)

Here h = 1/2�2
I � ikA/2B, � stands for a Gamma function; F (↵, �; �; z) = 2F1 (↵, �; �; z) denotes

a Gauss hypergeometric function, pFq
�
↵1,↵2, . . . ,↵p; �1, �2, . . . , �q, ; z

�
being a generalized

hypergeometric series [35]. We take 30 modes in the following numerical simulations. We
checked that the increase in the mode number beyond 30 does not alter our results.

In the remainder of the paper, we adopt the modified free-space geometry whereby the beam,
focused by a thin lens with focal length f=600mm, propagates toward a receiver plane. The
distances from the lens to the source and receiver planes are f and z, respectively. For this optical
system, the corresponding elements of the transfer ABCD matrix can be expressed as

A = 1 � z/f , B = f , C = �1/f , D = 0. (16)

Applying Eqs. (6), (9), (14) and (15), we can obtain the intensity distributions I (r, z) = W (r, r, z)
of RSCV beams at the di�erent propagation distances from the source plane. In Fig. 1, we
exhibit intensity evolution of RSCV beams with the carrier wavelength of 632.8 nm and di�erent
topological charges m at several propagation distances from the source, z = 0.6f , z = 0.8f and
z = f . We infer from the figure that the hollow dark cores of RSCV beams are maintained on the
beam propagation all the way to the focal plane of the lens located in the far-zone of the source.
It follows that the RSCV beam vortex structure remains intact as predicted by Eqs. (6), (9), and
(10). Importantly, our conclusions can be extended to RSCV beams with any topological charge
m as is illustrated by di�erent l rows of Fig. 1.

To further illustrate the vortex structure preservation of RSCV beams, we study the focal plane
(z = f ) intensity distributions of such beams with di�erent topological charges m generated by
sources of di�erent states of coherence that are characterized by the source coherence width �c.
We display the relevant numerical results in Fig. 2. To show the e�ect of the source coherence
width �c on the vortex structure, we plot the corresponding cross lines I (x, y = 0) /Imax (x, y = 0)
of normalized RSCV beam intensity distributions in three cases: �c = 1mm (black), �c = 0.5mm
(red), and �c = 0.1mm (green) as well. We stress that our results indicate the vortex structure
preservation in the focal plane for the RSCV beams with any topological charges m even in the
low coherence limit, �c ⌧ �I . We can see from the right l column in the figure that the source
coherence has little e�ect on the central portion of the beams for all topological charges m, even
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Fig. 1. Evolution of the RSCV beam intensity distributions focused by a thin lens at several
propagation distances. The beam intensity is normalized by its peak intensity. The numerical
parameters are as follows: �I = 1mm and �c = 1mm. White horizontal lines in each graphic
array l indicate a spatial scale within the l.

Fig. 2. Intensity distributions of radially sinc-correlated vortex beams in the focal plane
(i.e., z = f ) with di�erent topological charges m and the source coherence width �c. In the
right l column, the corresponding cross lines I (x, y = 0) /Imax (x, y = 0) of such beams with
�c = 1mm (black), �c = 0.5mm (red), and �c = 0.1mm (green) are exhibited. The root
mean square source width is taken to be �I = 1mm.

though it strongly influences the power distribution in the beam tails. Thus, the vortex structure
resilience on propagation of nearly incoherent RSCV beams through any linear ABCD system
makes such beams quite di�erent from typical PCVBs [10].

As is well known, whenever vortex beams are scattered by a small obstacle, a neutral dielectric
sphere, for example, the momentum of the beam and the sphere are exchanged, giving rise to
radiation and scattering forces pushing the sphere to a stable equilibrium position within the
beam field. This phenomenon lies at the heart of optical trapping of small particles [3]. In the
following section, we discuss the trapping forces exerted by sinc-correlated vortex beams onto a
small spherical particle.



Research Article Vol. 28, No. 6 / 16 March 2020 / Optics Express 8480

4. Trapping dielectric nanoparticles with radially sinc-correlated vortex beams

We now consider a spherical dielectric nanoparticle of radius a that we assume to be much smaller
than the carrier wavelength of the beam, a ⌧ �. In this approximation, we can adopt the Rayleigh
scattering theory [36] to analyze the radiation forces experienced by the nanoparticle in the field
of an RSCV beam. A detailed analysis [25,37] shows that the scattering and gradient forces are
the leading forces experienced by the particle in the radiation filed, whereas the gravitational,
buoyancy, drag, and Brownian forces are negligible in comparison. Hence, we only take the
scattering and radiation forces into consideration in this work.

We assume the RSCV beam, focused by a thin lens with the focal length f , to propagate toward
a receiver plane. Further, the distances from the lens to the source plane and to the receiver plane
are assumed to be l and z, respectively. The corresponding ABCD transfer matrix can then be
expressed as

©≠
´

A B

C D
™Æ
¨
=
©≠
´

1 � z/f l + z � lz/f
�1/f 1 � l/f

™Æ
¨

. (17)

It follows from the Rayleigh scattering theory that the scattering force is given by the expression
[25,36,37]

Fscat (r, �, z) = 8⇡
3c

n2(ka)4a2
✓
n2

r � 1
n2

r + 2

◆2

I (r, �, z) ez. (18)

Here c is the speed of light in vacuum; nr = n1/n2 is a relative refractive index, with n1 and n2
being the refractive indices of the nanoparticle and surrounding medium, respectively, and ez is
a unit vector along the beam propagation axis. Next, the gradient force can be shown to read
[25,36,37]

Fgrad (r, �, z) = 2⇡
c

n2a3 n2
r � 1

n2
r + 2

rI (r, �, z) . (19)

The gradient force pushs the nanoparticle to the maximum or minimum intensity area, depending
on whether the relative refractive index nr is greater or smaller than unity [25,37]. In our case, the
dark hollow region can be generated in the focal plane of the lens by an RSCV beam with a given
topological charge m. Controlling the intensity distribution of coherent and partially coherent
vortex beams was proposed as a means to trap small nanoparticles with the refractive index
smaller than the one of the surrounding medium [37]. We now adopt the following parameter
values: � = 632.8nm, which is the carrier wavelength of an RSCV beam, m = 1, I0 = 1W/mm2,
�I = 8mm, a = 30nm, n1 = 1 (air bubble) and n2 = 1.33 (water). Further, to attain su�ciently
high RSCV beam intensities, the other parameters are taken as l = 2.5m and f = 5mm.

The RSCV beam intensity profiles have a circular symmetry in any transverse plane, resulting
in the circularly symmetric radiation forces acting on a trapped nanoparticle. In Fig. 3, we display
the density plots of the x-component of the gradient force Fx(x, y = 0, z) = ex · Fgrad(x, y = 0, z)
and the magnitude of the scattering force Fscat(x, y = 0, z) in the vicinity of the focal plane
of the focusing lens. Further, we display in Fig. 4 the cross lines of Fx(x, y = 0, z = f ) and
Fscat(x, y = 0, z = f ) of the RSCV beam in the focal plane. We consider three cases here: highly
coherent RSCV source (�c = 20mm), moderately coherent RSCV source (�c = 8mm), and
nearly incoherent RSCV source (�c = 2mm). As the gradient force is nearly three orders of
magnitude greater than the scattering force, the latter is virtually negligible in practice. With the
coherence level of the beam decreasing from very high to very low, the gradient force changes
rather insignificantly. Note that the positive value of Fx corresponds to the x-component of the
gradient force in the positive x direction. It can be inferred from Fig. 4 that there exists only one
stable equilibrium position, labelled by a solid black dot in Fig. 4, for any trapped particle in a
transverse plane of any RSCV beam in the neighborhood of the focal plane. The said equilibrium
positions are also denoted by dashed white lines in Fig. 3.
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Fig. 3. Density plots of the magnitude of the scattering force Fscat(x, y = 0, z) (left column)
and the x-component of the gradient force Fx(x, y = 0, z) (right column) exerted by a RSCV
beam onto a small Rayleigh nanoparticle with the relative refractive index nr = 1/1.33 in
the vicinity of the focal plane for a variable source coherence width �c.

Fig. 4. Cross lines of the magnitude of the scattering force Fscat(x, y = 0, z = f ) (red curves)
and x-component of the gradient force Fx(x, y = 0, z = f ) (blue curves) exerted by a RSCV
beam onto a small Rayleigh nanoparticle with the relative refractive index nr = 1/1.33 in
the focal plane for a variable source coherence width �c.
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Our theoretical and numerical results imply that we can indeed combine the advantages of low
spatial coherence of the source and a stable vortex structure of the generated beam to ensnare
a small particle by an RSCV beam that will be relatively stable to inevitable fluctuations in a
surrounding medium. Thus, RSCV beams of any spatial coherence level can trap nanoparticles,
made of a material with the refractive index smaller than the one of the surrounding medium, in
any transverse plane in the vicinity of the focal plane. Finally, we note that the magnitudes of the
gradient and scattering forces drastically decrease for the vortex beams with topological charges
m>1 in agreement with previously published results [37].

5. Summary

In this work, we have established, for the first time to our knowledge, a general form of the
cross-spectral density function of partially coherent sources generating vortex beams that maintain
their vortices on propagation through any linear ABCD optical system, including free space and a
thin optical lens. To illustrate our general results, we introduced a new class of partially coherent
vortex beams with a closed form cross-spectral density function at the source. We demonstrated
through numerical simulations that each member of the new class of vortex endowed beams
maintains its vortex structure on propagation through an ABCD system regardless of the source
state of spatial coherence. As well we showed that the vortex preserving partially coherent beams
can be used in particle trapping applications by determining the radiation and scattering forces
exerted by any such beam onto a small Rayleigh particle. Instructively, the vortex structure
preservation of the new beams implies that novel beams of a very low state of coherence,
which are highly stable to intrinsic environment fluctuations, can be employed to trap Rayleigh
nanoparticles with the refractive index smaller than that of a surrounding medium.
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