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Abstract

The subject of this review lies at the cross-roads of optical coherence theory and surface
wave physics. We first recall how electromagnetic surface waves affect the spectrum,
polarization, and spatial correlation properties of thermal near fields. We then discuss
the modulation, control, and measurement of spatial coherence of random optical
beams by surface plasmon polaritons (SPPs). We review the spectral polarization and
subwavelength coherence of three-dimensional evanescent fields. Finally, we examine
polychromatic, structured SPP fields of tailored electromagnetic coherence.

Keywords: Coherence, Polarization, Spectrum, Surface plasmon polaritons, Evanescent
waves, Structured fields, Thermal light, Optical beams

1. Introduction

EmilWolf laid down the foundation of classical optical coherence the-

ory by introducing a (second-order) mutual coherence function and show-

ing that its free-space propagation is governed by a pair of coupled wave

equations bearing his name (Wolf, 1955). His subsequent pioneering work

(Wolf, 1956, 1959) has extended the scalar optical coherence theory into the

electromagnetic realm through introducing the concept of the degree of

polarization of beam-like electromagnetic fields (Wolf, 1959). Emil Wolf

and collaborators have also derived fundamental conservation laws involving

electromagnetic field correlations (Roman &Wolf, 1960a, 1960b), thereby

establishing that electromagnetic field correlations propagate in the form of

waves in free space. Wolf has then made another fundamental contribution

to the subject by establishing a mathematically rigorous space–frequency
representation of stationary random source ensembles and the fields they

produce in terms of the source coherent modes (Wolf, 1981, 1982). Not

merely do these seminal achievements furnish deeper insights into the

second-order coherence structure of random electromagnetic sources and

their generated fields, but the foundations established by EmilWolf facilitate

the discovery, characterization, and exploitation of new classes of partially

coherent, complex-structured electromagnetic fields as we will demonstrate

in this review.

To date, coherence has emerged as a central degree of freedom in optical

physics and it has played an important role in understanding and fine-tuning

fundamental properties of light and light–matter interactions (Mandel &

Wolf, 1995). It is now well established that controlling optical coherence

enables to tailor the spatial, spectral, and polarization distributions of prop-

agating statistical beams (Cai, Chen, Yu, Liu, & Liu, 2017). Such partially
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coherent optical beams are superior with respect to their fully coherent

counterparts in a number of applications, such as speckle-free imaging

(Redding, Choma, & Cao, 2012), ghost imaging (Erkmen & Shapiro,

2010; Shirai, 2017), information transfer through random environments

(Gbur, 2014), and microparticle trapping and manipulation (Auñón &

Nieto-Vesperinas, 2013). Electromagnetic surface waves, whose attractive-

ness comes from their unique capacity of strong confinement and long-

range guidance of electromagnetic energy along the supporting interface,

are ubiquitous in optical science as well and have gained ever-growing

interest (Polo,Mackay, & Lakhtakia, 2013). Among them evanescent waves

(de Fornel, 2001) and the celebrated surface polaritons (Agranovich&Mills,

1982), manifested in forms of plasmons, phonons, excitons, and magnons,

have especially occupied a pivotal position in modern nanophotonics

(Novotny&Hecht, 2012). The recent application of optical coherence the-

ory to electromagnetic surface waves has led to instructive fundamental

insights and results that constitute the subject of this review.

We address, on the one hand, the impacts of surface polaritons on exter-

nal optical fields and examine, on the other hand, the coherence and polar-

ization properties of physically important surface excitations, namely

evanescent waves and surface plasmon polariton (SPP) fields. More specif-

ically, we discuss how the salient characteristics, such as the near-field spec-

trum, correlation length, and degree of polarization, of thermal radiation

from primary half-space sources in thermal equilibrium strongly depend

on whether any surface polaritons are excited in the system. We then show

that SPPs can be utilized to manipulate, control, and measure spatial coher-

ence of propagating optical beams in a Young-type interference experiment

with finite-size slits in a metal screen. We review the unique polarization

features and subwavelength coherence structure associated with genuinely

three-dimensional, partially coherent evanescent waves created by total

internal reflection at a dielectric interface. Finally, we demonstrate how

the recently advanced notion of plasmon coherence engineering enables

one to design polychromatic, complex-structured SPP fields of arbitrary

state of coherence, endowed with nontrivial and versatile field intensity,

polarization, energy flow, and angular momentum distributions.

Emil Wolf has directly or indirectly mentored generations of scientists in

optical physics from all over the world. Indeed, two of the authors of this

article (S.A.P. and A.T.F.) are former students of Emil Wolf and the other

two (Y.C. and A.N.) are their students. It is truly our honor and privilege to

dedicate this review to Professor Emil Wolf, our mentor and the pioneer of

optical coherence theory.
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2. Surface-wave impacts on thermal field coherence

Thermal radiation is an electromagnetic field induced by the randomly

fluctuating motion of particles in matter. All natural objects, ranging from

biological systems to astrophysical entities, emit thermal radiation, and

numerous applications, such as thermographic cameras, solar photovoltaic

systems, and lighting arrangements, exploit thermal light. Due to its high

spatial isotropy, broadband spectrum, and random polarization, thermal

radiation is generally regarded as an incoherent light field. Nonetheless, ever

since the advent of modern optical coherence theory, it has been known that

the electromagnetic field emitted by a thermal source exhibits at least some

degree of coherence (Mandel & Wolf, 1995). In particular, the classical

coherence and polarization properties of universal blackbody radiation

within a cavity, in an aperture, and in the aperture far zone have been exten-

sively studied (Blomstedt, Friberg, & Set€al€a, 2017). It is now also well

established that the statistical characteristics of a thermal near field may differ

significantly from those of the thermal far field (Jones, O’Callahan, Yang, &

Raschke, 2013), offering many exciting opportunities for thermophotonic

engineering and management (Liu, Wang, & Zhang, 2015).

The presence of electromagnetic surface waves, in particular, can strongly

modulate the coherence, spectrum, and polarization of the thermal near field

(Joulain, Mulet, Marquier, Carminati, & Greffet, 2005). The spatial correla-

tions in thermal near-field radiation may extend over several tens of wave-

lengths when surface polaritons are involved (Carminati & Greffet, 1999;

Henkel, Joulain, Carminati, & Greffet, 2000). Likewise, a thermal broadband

near field can become essentially quasimonochromatic (Babuty, Joulain,

Chapuis, Greffet, & De Wilde, 2013; Shchegrov, Joulain, Carminati, &

Greffet, 2000) and highly polarized (Set€al€a, Kaivola, & Friberg, 2002) under

surface-polariton excitations. By imparting a linear momentum onto the sur-

face waves via a grating structure, objects in thermal equilibrium can emit

radiation in the form of spatially coherent beam lobes of directionally depen-

dent spectra (Greffet et al., 2002; Han & Norris, 2010; Park, Han, Nagpal, &

Norris, 2016). Besides gratings, coherent thermal field emission can also be

created by resonant photonic crystals and metamaterials (Inoue, De Zoysa,

Asano, & Noda, 2014; Laroche, Carminati, & Greffet, 2006; Lee, Fu, &

Zhang, 2005; Liu et al., 2011; Pralle et al., 2002). In this section, we review

the extraordinary impacts that electromagnetic surface-wave resonances have

on the spatial correlations, the spectrum, and the degree of polarization of

thermally excited light fields.
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2.1 Thermal light fields
Let us consider a homogeneous, isotropic, and nonmagnetic thermal source

filling the half-space z < 0 (see Fig. 1). The source medium is in local ther-

modynamic equilibrium at a uniform temperature T and described by a

complex relative permittivity E(ω) at angular frequency ω. Hereafter we will

refer to E(ω) as simply the complex permittivity. The thermal motion of the

source charges induces a fluctuating, statistically stationary electric current

in the medium, which in turn generates a thermal radiation field above

the source (z > 0). We let E(r, ω) represent a monochromatic realization

of the thermal electric field at position r in the space–frequency domain.

The field E(r, ω) can then be expressed via the associated Green tensor as

(Carminati & Greffet, 1999)

Eðr,ωÞ¼ iμ0ω

Z
V

Gðr,r0,ωÞ � jðr0,ωÞd3r0, (1)

where μ0 is the vacuum permeability, j(r0,ω) is the electric current density at
location r0 within the source medium, and the integration volume V covers

the whole half-space z < 0. The Green tensor G(r, r0, ω), being essentially a
spatial transfer function between the source current j(r0, ω) and the resultant
electric field E(r,ω), is conveniently expressed as a superposition of reflected
and refracted plane waves at the surface z ¼ 0 (Carminati & Greffet, 1999).

The nonradiating evanescent waves, resulting from total internal reflections

at the interface, are thus fully taken into account. Moreover, since the Green

tensor is explicitly equipped with the Fresnel coefficients, all surface

polariton effects are also naturally manifested, as they correspond to the pres-

ence of a pole in the transmission coefficient for p-polarized light.

0z >

z

0z <
( )ω

( , )ωE r

Fig. 1 Schematic of the microscopic origin of thermal radiation. The random electric
field E(r, ω) at angular frequency ω above the surface (z > 0) is emitted by the fluctu-
ating currents or polarization fluctuations within the medium (z < 0) of complex per-
mittivity E(ω). The random source currents in the medium are related to the induced
radiation field through the Green tensor of the system.
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The second-order correlation properties of the thermal field, at points

r1 and r2, can then be characterized in the space–frequency domain by

the 3 � 3 spectral electric coherence matrix (Friberg & Set€al€a, 2016; Tervo,
Set€al€a, & Friberg, 2004)

Wðr1,r2,ωÞ¼ hE�ðr1,ωÞETðr2,ωÞi, (2)

where the asterisk, superscript T, and angle brackets denote the complex

conjugate, matrix transpose, and ensemble average, respectively. The statis-

tical character of the thermal field originates from the randomly fluctuating

electric current densities, whose correlations at points r01 and r02 within the

source are governed by the fluctuation–dissipation theorem ( Jones et al., 2013)

h j*ðr01,ωÞjTðr02,ωÞi ¼
ω
π
E0E00ðωÞΘðω,TÞδðr01 � r02ÞI: (3)

Here E0 is the vacuum permittivity, E00(ω) is the imaginary part of the com-

plex permittivity of the medium, Θ(ω, T) is the mean energy of a Planck

oscillator, δðr01 � r02Þ is the Dirac delta function, and I is the 3 � 3 unit

matrix. It then follows from Eqs. (1)–(3) that the electric coherence matrix

of the thermal radiation field can be written as

Wðr1,r2,ωÞ¼ω3

π
μ20E0E

00ðωÞΘðω,TÞ
Z
V

G�ðr1,r0,ωÞGTðr2,r0,ωÞd3r0, (4)

which contains all the information about the spectral correlations among the

orthogonal thermal field components at the two points. Moreover, it has

been shown that W(r1, r2, ω) ∝ G00(r1, r2, ω), i.e., the spatial coherence

properties of the field are described by the spatial dependence of the imag-

inary part of the Green tensor (Set€al€a, Blomstedt, Kaivola, & Friberg, 2003).

2.2 Spatial correlation changes
Conventional wisdom in optical coherence theory presumes that spatial

correlations in the electromagnetic field extend, at least, over distances

on the order of the wavelength (Foley, Carter, & Wolf, 1986; Foley,

Kim, & Nussenzveig, 1988). Such a presumption has been tested by rig-

orous calculations pertaining to fields emitted by thermal half-space sources

(Carminati &Greffet, 1999; Henkel et al., 2000). Some key results are pres-

ented in Fig. 2. If the source consists of slightly lossy glass, the field corre-

lations along the surface, such as Wxxðr1,r2,ωÞ ¼ hE∗
xðr1,ωÞExðr2,ωÞi,

indeed behave as sinc(kρ) very close to the interface, where k is the free-

space wave number and ρ ¼ jr1 � r2j. This behavior is characteristic of
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radiation of a planar blackbody (Blomstedt et al., 2017). However, if the

medium is tungsten (W), which reveals strong absorption at the free-space

wavelength λ ¼ 500 nm, the longitudinal correlation length close to the

source surface is very short, only on the order of 0.06λ, corresponding to

about the skin depth of tungsten at this particular wavelength. When mov-

ing farther away from the boundary, the field coherence assumes the typical

blackbody form, as seen in Fig. 2A. The extremely narrow, quite unusual

spatial correlations in the immediate vicinity of a tungsten source are

explained by absorption, causing the loss of field correlations over a
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Fig. 2 Coherence matrix component Wxx(r1, r2, ω) of the near-field thermal radiation
as a function of the distance ρ¼ jr1� r2j at fixed height z0 above a semiinfinite thermal
half-space source. (A) Lossy glass and tungsten (W) (at two heights) at wavelength
λ ¼ 500 nm. (B) Tungsten (W), gold (Au), and silver (Ag) for λ ¼ 620 nm and z0 ¼ 0.05λ.
All curves are normalized by their maximum at ρ ¼ 0. From Carminati, R., & Greffet, J.-J.
(1999). Near-field effects in spatial coherence of thermal sources. Physical Review Letters,
82(8), 1660–1663.
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skin-depth distance within the medium (Carminati & Greffet, 1999;

Henkel et al., 2000). In principle, a finite-sized source can produce a light

field whose coherence length within the source may be arbitrarily short,

even in the absence of absorption (Blomstedt, Set€al€a, & Friberg, 2007a).

The coherence behavior is quite different if electromagnetic surface-wave

resonances are present. For example, at λ¼ 620 nm, both silver (Ag) and gold

(Au) support surface plasmon polaritons (SPPs). The SPP presence is

manifested in field correlations, as shown in Fig. 2B, where the spatial cor-

relationWxx(r1, r2,ω) oscillates and has an exponentially decaying envelope.
The decay lengths of the correlations are much longer than the wavelength,

on the order of the SPP propagation lengths 16λ (Au) and 65λ (Ag), indicat-
ing that the fields are coherent over long distances along the interface. Similar

long-range correlations occur for silicon carbide (SiC) at λ ¼ 11.36 μm when a

surface phonon polariton is generated (Carminati & Greffet, 1999). Such

long-range coherences seem unexpected because the fluctuating currents

are δ-correlated, as dictated by the fluctuation–dissipation theorem in

Eq. (3). Actually, an increase in the spatial coherence of a statistically

homogeneous planar source has the effect of diminishing the long-range

correlation of the near field under surface-wave resonances (Auñón &

Nieto-Vesperinas, 2011).

2.3 Spectral changes
Surface-wave excitations can also strongly affect the temporal coherence of the

thermal near field via changes in the spectral density (or spectrum)

Sðr,ωÞ ¼ trWðr, r,ωÞ, (5)

where tr denotes the matrix trace. Fig. 3 displays the spectral density of the

thermal radiation for a semiinfinite SiC source atT¼ 300 K at different heights

above the surface. It is observed fromFig. 3A that the radiation spectrum in the

far field is broadband in the frequency range 0 < ω < 400 � 1012 s�1, indi-

cating poor temporal coherence of the field. As the distance from the source

is decreased, the contribution to the energy density is increasingly more

confined to a narrow volume at the surface (Shchegrov et al., 2000), with

a corresponding decrease in the linewidth and increase in the temporal

coherence. As shown in Fig. 3C, in the very near field (height za ≪ λ, where
the mean wavelength of the radiation is about �λ� 10 μm) the spectrum is

virtually monochromatic at the central frequency ω0 ¼ 178.7 � 1012 s�1. At

the frequency ω0 the real part of the material complex permittivity

E0(ω0)¼�1, an indication that near ω0 there exist a large number of surface
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modes with different wave numbers but with frequencies that are very close

to each other (Joulain et al., 2005). The density of surface modes will thus

necessarily display a strong peak at ω ¼ ω0, but since the modes decay

exponentially away from the surface the peak vanishes in the far zone. In

more general scenarios, it is not only the surface waves but also the spatial

coherence of the source that modulate the spectrum (Roychowdhury &

Wolf, 2003) as well as the spatial correlations (Apostol & Dogariu, 2003)

of an electromagnetic near field.

2.4 Polarization changes
The thermal radiation is a genuine three-component electric field whose polar-

ization properties are in the space–frequency domain described by the 3� 3

spectral polarization matrix (Gil & Ossikovski, 2016)

Φðr,ωÞ ¼ Wðr, r,ωÞ: (6)
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Fig. 3 Spectral density S(ω, z) of the thermal field for a semiinfinite SiC sample at
temperature T ¼ 300 K at three different heights above the surface: (A) za ¼ 1000 μm,
(B) zb ¼ 2 μm, (C) zc ¼ 0.1 μm. The insets show the spectral density on a semilog scale
in the region of strong contributions from evanescent surface modes. From
Shchegrov, A. V., Joulain, K., Carminati, R., & Greffet, J.-J. (2000). Near-field spectral effects
due to electromagnetic surface excitations. Physical Review Letters, 85(7), 1548–1551.
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For a two-component field, the associated 2 � 2 polarization matrix can be

written unambiguously as a sum of twomatrices, one describing unpolarized

light and the other polarized light, and in this case the degree of polarization is

defined as the ratio of the spectral density of the polarized part to that of the

total field (Mandel & Wolf, 1995). For the 3 � 3 polarization matrix, how-

ever, such a decomposition does not generally exist (Brosseau, 1998; Gil &

Ossikovski, 2016), rendering the concept of degree of polarization more

involved (Gil, Norrman, Friberg, & Set€al€a, 2018b).
To quantify the degree of polarization or the degree of polarimetric purity

(Gil, 2007; Gil & Ossikovski, 2016; Gil & San Jos�e, 2010) of an arbitrary

three-component field, one may use the measure (Set€al€a, Kaivola, &

Friberg, 2002; Set€al€a, Shevchenko, Kaivola, & Friberg, 2002)

P3Dðr,ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

trΦ2ðr,ωÞ
tr2Φðr,ωÞ �

1

3

� �s
, (7)

which is invariant under unitary operations and satisfies 0 � P3D(r, ω) � 1.

The upper bound P3D(r, ω)¼ 1 describes polarized light and is encountered

only if all the field components are completely correlated. The lower bound

P3D(r, ω) ¼ 0 represents unpolarized light in the full three-dimensional sense:

the spectral densities of the three orthogonal components are the same and

no correlation exists between them in any reference frame. In fact, the quan-

tity P3D(r, ω) can be interpreted as describing how far the state Φ(r, ω)
is from such a fully unpolarized light state (necessarily proportional to

the 3 � 3 unit matrix) (Luis, 2005). It can also be viewed as a measure

characterizing the intensity and spin anisotropy of a three-component field

(Gil, Norrman, Friberg, & Set€al€a, 2019). In a frame where the diagonal

elements of Φ(r, ω) are equal, P3D(r, ω) turns into a direct measure for the

average correlations among the three orthogonal field components (Set€al€a,
Shevchenko, et al., 2002), analogously to the traditional degree of polarization

for planar, two-component beam fields (Born &Wolf, 1999). Likewise, one

may construct P3D(r, ω) via expanding the polarization matrix in terms of

the Gell-Mann matrices and the generalized Stokes parameters (Set€al€a,
Shevchenko, et al., 2002), similarly to the Pauli matrices and the Stokes

parameters for the usual degree of polarization (Mandel & Wolf, 1995).

Fig. 4 illustrates the degree of polarization P3D(r, ω) of the near-field

thermal radiation as a function of the height z above a source consisting

of Au and SiC (both at two wavelengths) as well as glass. Because glass does

not support electromagnetic surface waves, the degree of polarization decays
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monotonically as z increases due to the loss of the evanescent modes. On the

other hand, for Au at λ ¼ 620 nm an SPP resonance takes place, rendering

the near field strongly polarizedwith a peak value of P3D(r, ω)¼ 0.8 at height

z� 0.2λ. A similar behavior is observed in the near field of the SiC source at

λ ¼ 11.36 μm, corresponding to a surface phonon polariton. However,

tuning the wavelength off resonance reduces the degree of polarization

significantly, as evidenced by the curves for Au at λ ¼ 400 nm and for

SiC at λ¼ 9.1 μm. The abrupt reduction of P3D(r, ω) in the very near field,
with P3D(r, ω)! 1/4 in the limit z! 0 irrespective of the material (Set€al€a,
Kaivola, & Friberg, 2002), is caused by the so-called quasistatic field which

dominates over the surface waves or any other effects immediately above the

source (Henkel et al., 2000).

2.5 Highly directional thermal beams
So far the discussion has concerned surface-wave impacts on the thermal near

field. Indeed, since the surface waves are strongly evanescent in nature, their

influence on the thermal far field seems completely negligible. Yet, quite

remarkably, if a linear momentum is imparted onto the surface waves, they

may alter the thermal far-field radiation dramatically. In particular, a grating

structure can be employed to efficiently convert electromagnetic surface

waves into propagating fields, giving rise to directional emission of almost coher-

ent radiation from thermal sources at certain wavelengths (Greffet et al.,

2002). By properly choosing the period of the grating, it is possible to
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Fig. 4 Degree of polarization P3D(z) of the thermal near field at certain wavelengths λ as
a function of the height z above some semiinfinite sources at temperature T ¼ 300 K.
From Set€al€a, T., Kaivola, M., & Friberg, A. T. (2002). Degree of polarization in near fields of
thermal sources: Effects of surface waves. Physical Review Letters, 88(12), 123902.
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control the angle of propagation of the radiated field. Fig. 5A shows a SiC

grating, with the angular emission pattern at room temperature displayed in

Fig. 5B.We observe that the grating radiates infrared light into a very narrow

solid angle to the far field, an indication of a large coherence width in each

lobe. One finds also that the emission spectrum of the radiation depends

strongly on the observation direction.

More recently, a two-dimensional periodicmicrostructure, ruled on polar

material, was reported to create a spectrally narrow and highly directional

thermal emission beam (Han&Norris, 2010; Park et al., 2016). Fig. 6A shows

such a two-dimensional arrangement with a specific bull’s eye structure of

tungsten. The calculated emissivity at T ¼ 25°C for grooves with a period

of 3.5 μm, depth of 1.825 μm, and width of 1.925 μm is displayed in

Figs. 6B andC,while themeasured emissivity atT¼ 900°Cwith respective

groove dimensions 3.52 μm, 0.18 μm, and 1.76 μm is shown in Figs. 6D

and E. In this configuration, cavity modes are excited inside the grooves

which then couple coherently to each other by the delocalized surface

waves. At the cavity resonance frequency the coherence length can be

greatly enhanced, yielding a narrow angular width of narrowband thermal

emission in the plane perpendicular to the grating. Such highly directional

and frequency-selective thermal emission in the far field, induced by

surface-wave modulation of the near-field coherence, leads to several

exciting opportunities for new energy applications, including energy

harvesting, local thermal control and management, daytime radiative

cooling, nanoscale infrared imaging and mapping, and nanomanufacturing

(Li & Fan, 2018).
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Fig. 5 Coherent thermal emission from a silicon carbide (SiC) micrograting. (A) Image of
the SiC grating obtained by atomic force microscopy. (B) Emissivity for p polarization in
the far field as a function of the emission angle at wavelength λ ¼ 11.04 μm (blue), λ ¼
11.36 μm (red), and λ ¼ 11.86 μm (green). Experimental data at ambient temperature
are indicated by circles; the lines show the theoretical results. From Greffet, J.-J.,
Carminati, R., Joulain, K., Mulet, J.-P., Mainguy, S., & Chen, Y. (2002). Coherent emission
of light by thermal sources. Nature, 416(6876), 61–64.
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3. Surface-plasmonic impacts on optical beam
coherence

Ever since the observation of an extraordinary strong light transmission

through subwavelength hole arrays in metallic plates (Ebbesen, Lezec,

Ghaemi, Thio, & Wolff, 1998), surface electromagnetic modes have been
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(W). (A) Electron micrograph of a bull’s eye pattern on a W film. (B) Calculated emissivity
spectra at various angles θ from the surface normal, and (C) angular dependence of the
emissivity at the peak wavelength λ¼ 3.502 μm, for grooves having a period, depth, and
width of 3.5 μm, 1.825 μm, and 1.925 μm, respectively, at temperature T ¼ 25°C.
(D) Experimental results of the thermal emission spectra at various angles θ from the
surface normal, and (E) angular emissivity at the peak λ ¼ 3.532 μm (for the calculation
λ¼ 3.552 μm), for T¼ 900°C and groove dimensions 3.52 μm (period), 0.18 μm (depth),
and 1.76 μm (width). From Han, S. E. (2009). Thermal emission control with periodic micro-
structures (Doctoral dissertation). University of Minnesota; Han, S. E., & Norris, D. J. (2010).
Beaming thermal emission from hot metallic bull’s eyes. Optics Express, 18(5), 4829–4837;
Park, J. H., Han, S. E., Nagpal, P., & Norris, D. J. (2016). Observation of thermal beaming from
tungsten and molybdenum bull’s eyes. ACS Photonics, 3(3), 494–500.
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used to manipulate and to control optical transmission via diverse nano-

structures (Garcia-Vidal, Martin-Moreno, Ebbesen, & Kuipers, 2010).

Coherence, especially, can be strongly modulated by surface waves at the

apertures, with significant impacts on light transmission. For example,

SPPs excited in a metallic double-slit configuration can either enhance or

reduce the spatial coherence of a light beam traversing the interferometer

(Divitt, Frimmer, Visser, & Novotny, 2016; Gan, Gbur, & Visser, 2007),

having notable effects on the transmitted far-field behavior also when only

one of the openings is illuminated (Kanseri, Kandpal, & Budhani, 2012;

Kuzmin et al., 2007; Ravets et al., 2009). Engineering the SPP-induced

modulations enables broad and continuous control of the spatial coherence

of the output optical beam (Li & Pacifici, 2017), which consequently allows

versatile tunability of the transmission in general. Besides modifying and

controlling the statistical properties of optical beams, SPP interactions

can be harnessed to measure subwavelength spatial coherence widths of

light with even nanoscopic precision (Morrill, Li, & Pacifici, 2016). The

control and determination of optical beam coherence via surface-wave

resonances may thus be widely useful in high-resolution biomedical imag-

ing, tomographic schemes, source characterization, and engineered

nanophotonic elements with multifunctional capabilities.

In this section, we review how SPP interactions can be exploited to

modulate, control, and measure spatial coherence of optical beams in the

arguably most fundamental interferometric system, Young’s double-slit

configuration. We emphasize, however, that other SPP-based metallic

structures, such as a three-slit interferometer (Gan & Gbur, 2008), dense

arrays of nanoholes (Gan, Gu, Visser, & Gbur, 2012), subwavelength grat-

ings (Saastamoinen & Lajunen, 2013), nanocylinders (Lindberg, Set€al€a,
Kaivola, & Friberg, 2006), and even randomly rough interfaces (Leskova,

Maradudin, & Munoz-Lopez, 2005), can be used to modify the spatial

coherence of a beam. The coherence modulations in all these setups orig-

inate from SPP-mediated interference and encompass novel physical

effects, including optical coherence resonances and optical coherence band

gaps (Smith & Gbur, 2019), which are anticipated to be quite useful for

plasmonic coherence-converting devices. As an alternative to SPPs supported

by corrugated and lossy metal surfaces, photonic modes (Laroche et al., 2006)

in planar waveguides coupled with dielectric metasurfaces (Liu et al., 2011)

may also be utilized to achieve strong coherence modulation, with poten-

tial applications in light-transforming low-loss optical transmission

elements.
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3.1 Plasmon-modulated two-slit interference
Fig. 7 illustrates a plasmonic modification of Young’s seminal double-slit

interferometer, where a thin metal film deposited on glass and containing

two identical slits is illuminated by TM-polarized light. For a suitable metal,

angular frequency ω, and slit separation d, SPPs are excited at the bottom

(metal–glass) and top (metal–air) interfaces, which then travel between

the openings and eventually scatter back into freely propagating radiation

fields. The output field is thus composed not only of the directly transmitted

fields from the slits, but also of the scattered radiation fields induced by the

SPPs. Taking these contributions into account, and letting Ein(r1, ω) and
Ein(r2, ω) denote spectral realizations of the time-stationary electric illumi-

nation fields at openings 1 and 2, respectively, the corresponding output

radiation fields can be expressed as (Divitt et al., 2016; Gan et al., 2007)

Eoutðr1,ωÞ ¼ τðωÞ½Einðr1,ωÞ + βðωÞEinðr2,ωÞ�, (8)

Eoutðr2,ωÞ ¼ τðωÞ½Einðr2,ωÞ + βðωÞEinðr1,ωÞ�, (9)

with τ(ω) being the slit transmission coefficient. Especially, the quantity

βðωÞ ¼ βbðωÞeikbðωÞd + βtðωÞeiktðωÞd, (10)

where βb(ω) and βt(ω) are the SPP-coupling coefficients at the bottom and

top surfaces, respectively, and kb(ω) and kt(ω) are the associated (complex)

SPP wave numbers, specifies the field transmission induced by SPP cou-

pling. We note that the SPP field components perpendicular to the metal

surfaces are omitted.

Equations (8)–(10) imply that when no SPPs are involved, i.e., βb(ω) ¼
βt(ω) ¼ β(ω) ¼ 0, the output field from a slit is directly proportional to the

Glass

Metal

Air

SPPs

SPPs

Slit 1 Slit 2

Fig. 7 Plasmonic double-slit configuration. The incident light beam at each slit is split
into three components: one part is directly transmitted, the other two parts generate
SPPs at the bottom (metal–glass) and top (metal–air) interfaces. The excited SPPs travel
to the other slit and scatter back into freely propagating radiation.
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incident light impinging that slit. However, if SPPs are generated, the fields

emanating from the slits may be strongly modulated, depending on ω and d,

which subsequently affects the output spectral densities (spectra)

Soutðr1,ωÞ ¼ hjEoutðr1,ωÞj2i, Soutðr2,ωÞ ¼ hjEoutðr2,ωÞj2i, (11)

where the angle brackets stand for ensemble averaging. The SPP interactions

may have a strong impact also on the output spatial correlations between the

slits, which in the space–frequency domain are encoded in the spectral electric

correlation function (Mandel & Wolf, 1995)

Woutðr1,r2,ωÞ¼ hE∗
outðr1,ωÞEoutðr2,ωÞi: (12)

Rather surprisingly, by inspection of Eqs. (8)–(12) we conclude that even

when only one of the two openings is illuminated, the output spectral den-

sity at the other slit and the output spectral electric correlation function

between the slits are nonzero if SPPs are involved [β(ω) 6¼ 0]: for example,

although Ein(r2, ω) ¼ 0, one nonetheless has Sout(r2, ω) ¼ jτ(ω)j2jβ(ω)j2
hjEin(r1, ω)j2i and Wout(r1, r2, ω) ¼ jτ(ω)j2β(ω)hjEin(r1, ω)j2i. In this kind

of situation, the illuminated slit scatters the incident light and launches an

SPP that travels towards the partner opening, where it is converted into

free-space radiation and together with the directly transmitted component

leads to an observable interference pattern in the far field (Kanseri et al.,

2012; Kuzmin et al., 2007; Ravets et al., 2009).

Fig. 8 shows a numerical simulation of the SPP-modulated transmission

under coherent double-slit illumination for a 200 nm thick Au film in air

with 200 nm wide slits (Schouten et al., 2005). In Fig. 8A the angular-

integrated transmission coefficient (i.e., transmission integrated over several

interference orders) is displayed as a function of the incident light’s wave-

length for both TE-polarized and TM-polarized illumination. In the case

of TE polarization, the transmission is small and weakly modulated because

the induced surface excitations do not effectively couple to the other slit. For

TM polarization, on the other hand, the transmission displays a strong mod-

ulation due to the SPP-mediated interference. Figs. 8B andC show the intensity

distribution in close vicinity of the Au film for two different slit separations

under TM-polarized illumination. For the slit separation d¼ 5λSPP/2, where
λSPP is the SPP wavelength, the transmission is maximum (Fig. 8B), while

for d ¼ 4λSPP/2 the transmission is minimum (Fig. 8C). In the former

case, we can distinguish along the dark side of the film a well-developed,
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standing-wave pattern having six antinodes, two of which coincide with the

openings themselves. In the latter situation, on the other hand, the antinodes

of the pattern do not match with the slits. These results reflect the strong

wavelength and slit-separation dependences of the SPP-modulated

transmission.

A

B

C

Fig. 8 Simulation of SPP-modulated two-slit transmission under coherent illumination
for a free-standing, 200 nm thick Au film with 200 nm wide slits. (A) Angular-integrated
transmission coefficient as a function of the illumination wavelength for TM polarization
(solid curve) and TE polarization (dotted curve) with the openings separated by 25 μm.
(B) and (C) Intensity distribution in proximity of the film for TM-polarized illumination
when the transmission is maximal and minimal, respectively, corresponding to slit
separations 5λSPP/2 and 4λSPP/2, with λSPP denoting the SPP wavelength. All lengths
are in nm. From Schouten, H. F., Kuzmin, N., Dubois, G., Visser, T. D., Gbur, G.,
Alkemade, P. F. A.,…Eliel, E. R. (2005). Plasmon-assisted two-slit transmission: Young’s exper-
iment revisited. Physical Review Letters, 94(5), 053901.
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3.2 Spatial correlation control
As discussed above, the SPPs canmodulate the statistical characteristics of the

output fields and thus the total transmission of the double-slit system.

Accordingly, controlling the correlation properties of the radiation at the slits

via SPP interactions yields access to manage the total optical transmission. In

the space–frequency domain, the amount of spatial correlations among the

stationary output fields can be quantified in terms of the spectral degree of coher-

ence (Mandel & Wolf, 1995)

μoutðr1, r2,ωÞ ¼
W outðr1, r2,ωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Soutðr1,ωÞSoutðr2,ωÞ
p : (13)

Taking the input spectral densities equal, hjEin(r1, ω)j2i ¼ hjEin(r2, ω)j2i
¼ Sin(ω), Eqs. (8)–(13) result in (Divitt et al., 2016; Gan et al., 2007)

μoutðr1,r2,ωÞ¼
μinðr1,r2,ωÞ+ jβðωÞj2μ∗inðr1,r2,ωÞ+2Re½βðωÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1+ α1ðr1,r2,ωÞ�½1+ α2ðr1,r2,ωÞ�

p , (14)

where μin(r1, r2, ω) ¼ hEin*(r1, ω)Ein(r2, ω)i/Sin(ω) is the spectral degree of
coherence of the input fields at the slits, and where we have introduced

α1ðr1, r2,ωÞ ¼ jβðωÞj2 + 2Re½ βðωÞμinðr1, r2,ωÞ�, (15)

α2ðr1, r2,ωÞ ¼ jβðωÞj2 + 2Re½ β*ðωÞμinðr1, r2,ωÞ�: (16)

Three main conclusions can be drawn from Eq. (14). First, the coherence

modulation originates from the SPPs: when no SPPs are present [β(ω) ¼ 0],

μout(r1, r2,ω)¼ μin(r1, r2,ω), indicating that the output degree of coherence
is equal to the input degree of coherence. Second, if the illumination is fully

coherent and in phase, the output radiation is totally coherent as well, viz.,

μout(r1, r2, ω) ¼ μin(r1, r2, ω) ¼ 1, so in this particular case the SPPs will

not modify the coherence. Third, if the incident light field is incoherent,

i.e., μin(r1, r2, ω) ¼ 0, we obtain μout(r1, r2, ω) ¼ 2Re[β(ω)]/[1 + jβ(ω)j2],
implying that not only can the coherence of the output radiation be greater

than that of the incident field, but it may also switch signs, owing to SPP inter-

actions, resulting in anticorrelated fields at the slits (Li & Pacifici, 2017).

The way the slit separation affects the SPP-modulated coherence can be

studied by replacing the parallel slits with nonparallel slits (Divitt et al.,

2016). Such a setup is shown in Fig. 9A, where the incident light from a

spatially extended thermal source is spectrally filtered at 633 	 5 nm wave-

length and linearly polarized before it illuminates a 200 nm thick Au film
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deposited on glass and with two nonparallel slits having a width of 400 nm.

Figs. 9B and C provide schematic and cross-sectional diagrams, respectively,

of the double-slit sample. The experimental data for the magnitude of the

output spectral degree of coherence under both TE-polarized (blue dots)

andTM-polarized (red crosses) illumination are displayed in Fig. 9D. The solid

A B

C

D

Fig. 9 Experimental study of SPP-modulated coherence in a double-slit configuration.
(A) Illustration of the experiment. Filtered and polarized light of wavelength 633	 5 nm
from an extended thermal source passes via two nonparallel slits in a gold film and cre-
ates an interference pattern on a detector (shown in false color). Rotating the polarizer
allows to control the SPP coupling on the metal film. (B) and (C) Schematic and cross-
sectional diagrams of the double-slit setup. (D) Measuredmagnitude of the output spec-
tral degree of coherence at the slits for TE-polarized (blue dots) and TM-polarized (red
crosses) light as a function of the slit separation d. The theoretical fit (solid black curve)
corresponds to Eq. (14), with the parameter values given in the text. From Divitt, S.,
Frimmer, M., Visser, T. D., & Novotny, L. (2016). Modulation of optical spatial coherence
by surface plasmon polaritons. Optics Letters, 41(13), 3094–3097.
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curve in Fig. 9D is a theoretical result for TM polarization according

to Eq. (14), with the SPP-coupling coefficients βb(ω) ¼ 0.026 and

βt(ω) ¼ 0.023 being the only fitting parameters; the values for kb(ω) ¼
1.65 � 107 + i1.3 � 105 m�1 and kt(ω)¼ 1.03 � 107 + i3.3 � 104 m�1 are dic-

tated by the materials, and a linear fit to the plotted TE curve was utilized for

μin(r1, r2,ω) (Divitt et al., 2016). For TE polarization no SPPs are excited and

μout(r1, r2, ω) decreases nearly linearly with d in the given range, whereby the
double-slit sample acts like a simple binary mask for measuring μin(r1, r2, ω)
produced by the bare source. In contrast, for TM-polarized light the output

degree of coherence shows a strong modulation as a function of the slit

separation, originating from SPP coupling at both the upper and lower inter-

faces of the Au layer.

Not only the magnitude but also the phase of the (complex-valued) degree

of coherence can be modified via SPP coupling by varying the slit separa-

tion, allowing full control of the output radiation coherence (Li & Pacifici,

2017). In addition, besides the slit separation, the operating frequency (wave-

length) may have a strong impact on the SPP-mediated interference and

thus on the spatial correlation of the emanating light field from the openings.

Fig. 10 shows measurements of the wavelength-resolved interference

Fig. 10 Measurements of wavelength-resolved interference patterns for broadband
light exiting a 200 nm thick Ag film with two parallel slits under TE (top) and TM
(bottom) polarized K€ohler illumination. The slits are 200 nm wide, 15 μm long, and sep-
arated by 5 μm. Insets (right panels): conversion of incoherent light into partially coher-
ent light at wavelength λ1 ¼ 581 nm (solid curves), and vice versa at λ2 ¼ 712 nm
(dashed curves), as a result of strong SPP coupling for TM polarization. From Li, D., &
Pacifici, D. (2017). Strong amplitude and phase modulation of optical spatial coherence
with surface plasmon polaritons. Science Advances, 3(10), e1700133.
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patterns induced by two parallel slits etched on a 200 nm thick Ag film and

illuminated by linearly polarized broadband light under K€ohler illumination

(Li & Pacifici, 2017), with the openings being 200 nm wide, 15 μm long,

and separated by 5 μm. The results show striking changes in the observed

fringe visibility, and thus in the spatial coherence between the slits, under

SPP coupling. For instance, whereas at wavelength λ1¼ 581 nm the field is

virtually incoherent when no SPPs are present (TE polarization), the field

turns partially coherent under SPP excitation (TM polarization) as evidenced

by enhanced fringe visibility. Vice versa, the decreased fringe contrast at λ2
¼ 712 nm for TM polarization with respect to TE polarization is a mani-

festation of the strong SPP-induced reduction of spatial correlations between

the slits, rendering the output field effectively incoherent.

3.3 Nanoscale coherence width measurement
Not only does the SPP-mediated interference modulate spatial correlations

of the propagating light beam, but it also provides novel means for measuring

nanoscale coherence widths of optical fields (Morrill et al., 2016). Such a mea-

surement can be performed by using a modified double-slit setup, as illus-

trated in Fig. 11, in which one of the two openings is replaced with a

subwavelength groove that converts a fraction of the incident light into

SPPs propagating towards the neighboring slit. The interference of the

scattered SPPs and the incident field at the opening results in a measurable

change in the light intensity transmitted through the slit, from which the

spatial coherence width of the input optical beam can be determined

(Morrill et al., 2016). A similar arrangement can be employed to achieve

q

Arm length, d

Metal

SPP

Fig. 11 Schematic of a slit-groove setup for measuring nanoscale coherence widths of
optical fields. The light impinging the metal groove at an angle of incidence θ excites
SPPs that after propagation interfere with the light at the slit. Measuring the SPP-
modulated transmission through the opening allows to extract information about
the spatial coherence width of the incident optical field.
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full dynamical control of optical transmission through a nanoscopic slit by

varying the incident beam’s phase relative to that of the generated SPPs at a

nearby grating (Daniel et al., 2015).

In more precise terms, when the metallic slit-groove system is illumi-

nated, the part of the light incident on the groove, Ein(rG, ω), is partially
scattered into an SPP, with the SPP-coupling efficiency determined by

the (complex-valued) groove scattering coefficient βG(ω). After propagat-
ing the distance d between the groove and the slit, the SPP has attenuated as

dictated by the imaginary part of the SPP wave number, kSPP
00 (ω), and it has

also acquired the additional phase (Morrill et al., 2016)

ψðωÞ ¼ k0SPPðωÞd � kðωÞ sin θ d + ϕðωÞ, (17)

where kSPP
0 (ω) is the real part of the SPPwave number, k(ω) is the free-space

wave number, θ is the angle of incidence respective to the screen normal,

and ϕ(ω) is the phase resulting from scattering events at the groove and the

slit. Eventually the SPP interferes with the electric component Ein(rS, ω)
incident on the slit, resulting in the output spectral density

SoutðrS,ωÞ∝ SinðrS,ωÞ+ jβGðωÞj2SinðrG,ωÞe�2k00SPPðωÞd

+2jβGðωÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SinðrS,ωÞSinðrG,ωÞ

p
e�k00SPPðωÞd

�jμinðrS,rG,ωÞjcosfψðωÞ+ arg½μinðrS,rG,ωÞ�g,
(18)

including the spectral densities Sin(rS, ω) ¼ hjEin(rS, ω)j2i and Sin(rG, ω) ¼
hjEin(rG, ω)j2i of the input fields, and the input spectral degree of coherence

μinðrS,rG,ωÞ¼
hE∗

inðrS,ωÞEinðrG,ωÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SinðrS,ωÞSinðrG,ωÞ

p : (19)

We note that Eq. (18) is an approximation that considers only first-order

interference effects; a more accurate model involves higher-order terms aris-

ing from multiple SPP pathways between the slit and the groove (Morrill

et al., 2016).

The magnitude of the input degree of coherence in Eq. (19) is obtained

by measuring the SPP-modulated visibility V (ω) of the output field when

Sin(rS, ω) ¼ Sin(rG, ω) (Morrill et al., 2016). The associated spatial coherence

width LC(ω) is then considered as the slit-groove separation over which the

fringe visibility drops from V (ω)¼ 1 to V (ω) ¼ 0.88 (Morrill et al., 2016).

Fig. 12 shows coherence width measurements for light of varying degree of

coherence incident on a 300 nm thick Ag layer deposited on glass. The slit is

100 nm wide and 15 μm long, paralleled by an equally long groove with a
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width of 200 nm and depth of 20 nm. The spatial coherence of the incident

beam is varied by adjusting a condenser aperture under K€ohler illumination,

such that increasing the subtended angle Δθ reduces the coherence

(Morrill et al., 2016). We find from Fig. 12 that for larger apertures, and

thus lower degrees of spatial coherence, subwavelength coherence widths are

possible; especially, for Δθ ¼ 30° we have LC(ω) ¼ 330 nm at wavelength

λ ¼ 500 nm. In addition, the remarkable spectral resolution (
 0.4 nm) in
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Fig. 12 Coherence width measurements as a function of wavelength for light of varying
degree of spatial coherence incident on a slit-groove system (see Fig. 11) composed of
Ag. The slit etched on the 300 nm thick Ag layer is 100 nm wide and 15 μm long,
whereas the equally long groove paralleling the slit is 200 nm wide and 20 nm deep.
The subtended angle Δθ of the incident light is adjusted by a condenser aperture in
K€ohler illumination, with increasing Δθ reducing the spatial coherence. The blue bands
show a 95% confidence interval, determined by statistical and error analyses, while the
dashed lines are theoretical fits indicating the general coherence width behavior. From
Morrill, D., Li, D., & Pacifici, D. (2016). Measuring subwavelength spatial coherence with
plasmonic interferometry. Nature Photonics, 10(10), 681–687.
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Fig. 12 owing to SPP interactions provides unforeseen precision into the

very fine structure of spatial coherence of light, thereby establishing

plasmonic interferometry as a unique metrological platform to probe optical

coherence at the nanoscale.

4. Partially coherent evanescent wave fields

Optical evanescent waves are a special type of electromagnetic surface

waves, formedwhen a light field undergoes total internal reflection at a dielec-

tric boundary (de Fornel, 2001). When interacting with matter, evanescent

waves enable a phenomenon analogous to quantum mechanical tunneling

through a potential barrier (de Fornel, 2001; Novotny & Hecht, 2012).

They also allow to study biological samples with a resolution well beyond

the classical diffraction limit (Axelrod, 2001; Sako, Minoghchi, &

Yanagida, 2000; Schneckenburger, 2005) and play an important role in

surface-polariton excitation (Maier, 2007; Maradudin, Sambles, & Barnes,

2014). In addition, evanescent waves are associated with some remarkable

physical properties, such as extraordinary transverse spin angular momentum

(Aiello&Banzer, 2016;Aiello, Banzer,Neugebauer,&Leuchs, 2015; Bliokh,

Bekshaev, &Nori, 2014; Bliokh&Nori, 2015) and spin-momentum locking

(Bliokh, Rodrı́guez-Fortuño, Nori, & Zayats, 2015; VanMechelen & Jacob,

2016), intimately related to the quantum spin Hall effect of light (Bliokh,

Smirnova, & Nori, 2015), as well as nonconservation of helicity under rela-

tivistic Lorentz boosts (Bliokh, 2018). Evanescent waves have thus a pivotal

position in nanophotonics and for the understanding of several optical phe-

nomena that are confined to subwavelength dimensions.

To date, however, most studies concerning evanescent waves have dealt

with monochromatic and therefore completely coherent and polarized

fields. Partially coherent and partially polarized evanescent wave fields have

gained attention only recently, and they differ from their deterministic

(monochromatic) counterparts in several fundamental physical aspects, with

potential applications in near-field probing, optical tweezing, nanoparticle

excitation, among other surface electromagnetic light–matter interactions.

For example, while the polarization ellipse of a monochromatic evanescent

wave is always restricted to a fixed plane in space, the electric field of a

partially polarized evanescent wave fluctuates in three orthogonal spatial

directions in any reference frame (Norrman, Friberg, Gil, & Set€al€a, 2017).
A partially polarized evanescent wave is also in a so-called nonregular polar-

ization state (Norrman, Gil, Friberg, & Set€al€a, 2019), constituting a rich and

128 Yahong Chen et al.



significant family of genuine three-component light fields that cannot be

characterized with the traditional polarization formalism for beam-like fields

(Gil, Friberg, Set€al€a, & San Jos�e, 2017; Gil, Norrman, Friberg, & Set€al€a,
2018a). Furthermore, random evanescent fields may exhibit subwavelength

surface coherence lengths and their degree of polarization can change nota-

bly when moving only a fraction of a wavelength away from the supporting

interface (Norrman, Set€al€a, & Friberg, 2011). Generation and electromag-

netic coherence of completely unpolarized three-component evanescent

fields in multibeam illumination have also been explored, revealing the pos-

sibility to tailor evanescent fields sharing polarization properties identical to

those of universal blackbody radiation, yet with tunable coherence states

(Norrman, Set€al€a, & Friberg, 2015a).

In this section, after recalling the monochromatic evanescent wave in

total internal reflection, we review the recent discoveries and progress

regarding the subwavelength coherence structure and three-dimensional

polarization of such random evanescent wave fields.

4.1 Evanescent wave in total internal reflection
Fig. 13 illustrates a monochromatic light beam, represented as a homoge-

neous electromagnetic plane-wave field, generating an optical evanescent

wave via total internal reflection at a planar interface (z ¼ 0) between two

uniform dielectric media. Both medium 1 (z < 0) and medium 2 (z > 0),

having (ω-dependent) refractive indices n1 and n2, respectively, are lossless.
The incoming wave, generally carrying both an s-polarized and a p-polarized

2n

1n

z

y

x

Fig. 13 Evanescent wave excitation via total internal reflection at a planar interface
(z ¼ 0) between two lossless dielectric media having refractive indices n1 (z < 0) and
n2 (z > 0). The incident beam impinges the surface with an azimuthal angle φ at the
angle of incidence θ.
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component, hits the surface at an azimuthal angle 0� φ< 2π (with respect to
the x axis) and at an angle of incidence θc< θ< π/2, where θc ¼ arcsin ~n�1 is

the critical anglewith ~n ¼ n1=n2 > 1.Under these conditions, the spatial part

of the electric field for the evanescent wave takes the form

Eðr,ωÞ ¼ ðtsEsŝ + tpEpp̂Þeik�r, (20)

where Es and Ep are the (ω-dependent) complex field amplitudes of the

s- and p-polarized parts of the incident wave in medium 1. The Fresnel

transmission coefficients ts and tp are given by (Norrman et al., 2011)

ts ¼ 2 cos θ
cos θ + iγ

, tp ¼ 2~n2cos θχ

cos θ + i~n2γ
, (21)

including the (ω-dependent) quantities

γ ¼ ~n�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 sin2 θ � 1

p
, χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 θ + γ2

p
, (22)

where the former may be interpreted as the decay constant of the evanescent

wave. Furthermore, in Cartesian coordinates, the wave vector k and the unit

polarization vectors ŝ and p̂ of the evanescent wave read (Norrman et al.,

2015a)

k¼ k1

sin θ cos φ
sin θ sin φ

iγ

0
@

1
A, ŝ¼

� sin φ
cos φ

0

0
@

1
A, p̂¼ 1

χ

�iγ cos φ
�iγ sin φ

sin θ

0
@

1
A, (23)

with k1 being the (ω-dependent) wave number in medium 1.

We emphasize that the polarization vectors in Eq. (23) are constructed as

p̂ ¼ k̂� ŝ, with especially k̂ ¼ k=jkj where jkj is the wave-vector magni-

tude, whereupon fk̂, ŝ, p̂g forms a right-handed and unit-normalized vector

triad (Norrman et al., 2011). Owing to this construction, the Fresnel trans-

mission coefficient tp in Eq. (21) differs from the conventional expression

(de Fornel, 2001; Novotny & Hecht, 2012). The difference stems from

the wave-vector normalization: instead of the magnitude jkj, it is customary

to normalize k of the evanescent wave with respect to the wave number k2 in

medium 2 (de Fornel, 2001; Novotny &Hecht, 2012). Such a choice, how-

ever, does not yield a k̂of unitmagnitude because jkj ¼ k1χ 6¼ k2 according to

Eqs. (22) and (23). The virtue of the normalization k̂ ¼ k=jkj, not only for
evanescent waves but for general electromagnetic surface waves including

absorptive media (Norrman, 2016), is that it always preserves the physical
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meaning of the transmission coefficient as being the ratio between the com-

plex field amplitudes on the two opposite sides of the interface. If k is nor-

malized with respect to the wave number, this is only true for purely

propagating waves in lossless media having real-valued wave vectors.

Another fundamental feature concerning Eq. (23) is that the polarization

vectors can be expressed solely in terms of the wave vector, i.e.,

ŝ¼ i
k� �k

jk� �kj , p̂¼ ik̂� k� �k

jk� �kj : (24)

This property is known as spin-momentum locking (VanMechelen& Jacob,

2016) or spin-direction locking (Bliokh,Rodrı́guez-Fortuño, et al., 2015) of

the evanescent wave, viz., the wave vector fundamentally locks the polari-

zation (spin) of the field. The locking in Eq. (24) is totally coordinate inde-

pendent and actually covers any electromagnetic surface wave (also in lossy

media) with a wave vector k ¼ kkêk + k?ê?, where kk and k? are complex

numbers while êk and ê? are real-valued unit vectors lying parallel and

perpendicular to the surface, respectively, such that the triad fk̂, ŝ, p̂g is

right-handed, unit-normalized, and satisfies k̂ � ŝ ¼ k̂ � p̂ ¼ 0 as required

by Maxwell’s equations (Norrman, 2016). Consequently, the vectors k̂

and p̂ are generally not mutually orthogonal when the wave vector is

complex-valued, as for an evanescent wave in p-polarized excitationwhich

is elliptically polarized in the plane of incidence (Józefowski, Fiutowski,

Kawalec, & Rubahn, 2007; Kawalec, Józefowski, Fiutowski, Kasprowicz, &

Dohnalik, 2007).

4.2 Degrees of coherence and polarization
TakingE(r,ω) in Eq. (20) as a field realization, the spectral coherencematrix

[Eq. (2)] characterizing all the second-order statistical properties of a random,

stationary evanescent wave is expressible as

Wðr1, r2,ωÞ ¼ W0e
ik1 sin θð cosφΔx+ sinφΔyÞe�k1γðz1+z2Þ, (25)

including Δx ¼ x2 � x1, Δy ¼ y2 � y1, and the Hermitian matrix

W0¼wsŝ
�ŝT +wpp̂

�p̂T + jμj ffiffiffiffiffiffiffiffiffi
wswp

p
eiφŝ�p̂T + e�iφp̂�ŝTð Þ, (26)

with ws ¼ jtsj2hjEsj2i and wp ¼ jtpj2hjEpj2i being proportional to the energy

densities of the s- and p-polarized components, respectively, of the evanes-

cent wave at the surface (z ¼ 0). Moreover, μ ¼ hE*
s Epi=ðhjEsj2ihjEpj2iÞ1=2
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is the spectral correlation coefficient between the s- and p-polarized parts

of the incident excitation light beam, and φ ¼ arg(μ) � arg(ts) + arg(tp) is

a phase. The associated spectral polarization matrix [Eq. (6)] reads

Φðr,ωÞ ¼ W0e
�2k1γz, (27)

which spatially depends only on the height z.

While the (three-dimensional) polarization characteristics of the random

evanescent wave can be quantified further by the degree of polarimetric

purity given in Eq. (7), its coherence properties can be assessed quantitatively

by the electromagnetic degree of coherence (Set€al€a, Tervo, & Friberg, 2004)

μEMðr1,r2,ωÞ¼
kWðr1,r2,ωÞkFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðr1,ωÞSðr2,ωÞ

p , (28)

where k ⋯ kF refers to the Frobenius matrix norm and S(r,ω)¼ trW(r, r,ω)
is the spectral density, as before. An analogous quantity can be used in the

space–time domain (Tervo, Set€al€a, & Friberg, 2003). The degree of coher-

ence in Eq. (28) includes every element of the coherence matrix and is

thereby a measure of the spectral correlations among all the orthogonal com-

ponents of the electric field at two points. It satisfies 0 � μEM(r1, r2, ω) � 1

and remains invariant under local unitary transformations. The upper bound

corresponds uniquely to the situation in which all the electric field compo-

nents are fully correlated, while the lower bound stands for the case where

no correlations (coherence) exist between any of the components. For beam-

like fields, the electromagnetic degree of coherence characterizes the modu-

lation of the four Stokes parameters in Young’s interference experiment,

i.e., not merely the intensity variation but also the polarization-state modu-

lation (Lepp€anen, Saastamoinen, Friberg, & Set€al€a, 2014; Set€al€a, Tervo, &
Friberg, 2006a), and is thus a generalization of the traditional degree of coher-

ence for scalar-light fields (which exclusively involves the visibility of intensity

fringes). Likewise, its recently introduced quantum counterpart (Norrman,

Blomstedt, Set€al€a, & Friberg, 2017), as also the degree of polarization for

quantum light beams (Norrman, Friberg, & Leuchs, 2020), is fundamentally

connected to complementarity and wave-particle duality of genuine vector-

light fields in photon interference.

For a stationary evanescent wave, the electromagnetic degree of coher-

ence in Eq. (28) takes the form (Norrman et al., 2011)

μEMðr1, r2,ωÞ ¼ μEMðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ð1� jμj2Þwswp

ðws + wpÞ2
s

, (29)
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and in a similar fashion the degree of polarimetric purity given by Eq. (7)

reads (Norrman et al., 2011)

P3Dðr,ωÞ ¼ P3DðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3ð1� jμj2Þwswp

ðws + wpÞ2
s

: (30)

The maximum values μEM(ω) ¼ P3D(ω) ¼ 1, representing a totally coherent

and polarized evanescent wave, are saturated only when the excitation beam is

polarized, i.e., hjEsj2i ¼ 0, hjEpj2i ¼ 0, or jμj ¼ 1. For all other cases the eva-

nescent wave is partially coherent and partially polarized with μEM(ω)< 1 and

P3D(ω) < 1. The lower bounds μEMðωÞ ¼ 1=
ffiffiffi
2

p
and P3D(ω) ¼ 1/2 are met

exclusively if hjEsj2i=hjEpj2i ¼ jtpj2=jtsj2 and jμj ¼ 0, a situation in which

the evanescent wave attains its highest degree of polarimetric nonregularity

(Norrman et al., 2019). The concept of polarimetric nonregularity

(Gil et al., 2017, 2018a) is discussed in detail in Section 4.4. Furthermore,

the lower limit P3D(ω)¼ 1/2 for the evanescent wave is a specific manifesta-

tion of a more general result, stating that light created by an optical system

out of a single, arbitrary polarized beam obeys P3D(r,ω) � 1/2 (Set€al€a,
Lindfors, & Friberg, 2009).

Contrary to a single evanescent wave, a superposition of evanescent

waves can form a random near field that exhibits subwavelength spatial var-

iations in the degrees of coherence and polarization. For example, evanes-

cent fields at high refractive-index-contrast interfaces may show coherence

lengths much smaller than the light’s wavelength (Norrman et al., 2011).

The coherence lengths are typically smallest in the immediate vicinity of

the surface, but can get very large already within a wavelength of it.

Unlike for the thermal near fields (Section 2.2), the subwavelength coher-

ence lengths of evanescent fields are not a consequence of absorption

because the involved media are lossless. Likewise, evanescent fields can dis-

play variations in the degree of polarization at subwavelength scales and

they can also exhibit polarization states for which P3D(r,ω) < 1/2

(Norrman et al., 2011), a regime not accessible for ordinary beam-like fields

(Set€al€a, Shevchenko, et al., 2002). Already two partially polarized beams

sharing the same plane of incidence are sufficient for the excitation of an

evanescent field having P3D(r, ω) < 1/2, and allowing the incident beams

to have different planes of incidence can even lead to P3D(r,ω) � 0

(Norrman et al., 2015a), a result that has been confirmed to be valid in

the space–time domain too (Hassinen, Popov, Friberg, & Set€al€a, 2016).
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A light field with P3D(r,ω)¼ 0 is regarded completely unpolarized in the

full three-dimensional sense: its polarization ellipse evolves totally randomly

in the whole three-dimensional space and it unambiguously corresponds to a

polarization matrix which is proportional to the 3 � 3 identity matrix.

Recently the generation and spectral electromagnetic coherence of station-

ary, fully unpolarized three-component evanescent fields involving a mul-

tibeam illumination configuration were explored (Norrman et al., 2015a).

Fig. 14 illustrates the spatial behavior of the spectral electromagnetic degree

A B

C D

Fig. 14 Spatial behavior of the spectral electromagnetic coherence μEM(Δρ, ω) for an
unpolarized three-component evanescent field above a SiO2/air interface excited by
(A) N ¼ 3, (B) N ¼ 4, (C) N ¼ 5, and (D) N ¼ 6 uniformly distributed and uncorrelated
incident beams with the same angle of incidence θ ¼ π/3. The refractive indices are
n1 ¼ 1.5 and n2 ¼ 1, and λ is the free-space wavelength. From Norrman, A. (2016).
Electromagnetic coherence of optical surface and quantum light fields (Doctoral
dissertation). University of Eastern Finland.
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of coherence for such an unpolarized evanescent field at a SiO2/air interface,

created by different numbers of uniformly distributed excitation beams shar-

ing the same angle of incidence θ ¼ π/3. The beams are independent and

have uncorrelated s- and p-polarized parts, with the respective intensity ratio

hjEsj2i/hjEpj2i specifically fixed (Norrman et al., 2015a). Owing to these

conditions μEM(r1, r2, ω) ¼ μEM(Δρ, ω), where Δρ ¼ Δxêx + Δyêy with
êx and êy being the unit vectors in the x and y directions, respectively.

One observes that the degree of coherence can vary considerably, exhibiting

diverse subwavelength lattice-like structures depending on the used modal-

ity. This reveals the feasibility to tailor evanescent fields possessing polariza-

tion qualities identical to those of universal blackbody radiation, yet with

tunable spatial coherence characteristics.

4.3 Polarimetric dimension
Polarization of light (Brosseau, 1998; Gil & Ossikovski, 2016) is determined

by the orientation of the electric field vector. In a specific coordinate system,

the electric part of random light may fluctuate in three orthogonal spatial

directions, but by changing the frame of reference it may turn out that

the field vector actually is restricted to a plane, or even that it vibrates in just

a single direction. Optical fields can hence be classified into one-dimensional

(1D), two-dimensional (2D), or three-dimensional (3D) light, depending on

the minimum number of orthogonal coordinate axes needed to describe

them. The dimensional nature of light becomes especially important when

addressing polarization characteristics of complex-structured light, electro-

magnetic near fields, and tightly focused optical beams.

Let R be the 3 � 3 polarization matrix either in the space–time domain

or in the space–frequency domain. The dimensionality of light is formally

defined by the eigenvalues a1 � a2 � a3 � 0 of the real part R0 of the full
complex polarization matrix R as (Norrman, Friberg, et al., 2017)

1D light: a1> 0, a2¼ 0, a3¼ 0; (31)

2D light: a1> 0, a2> 0, a3¼ 0; (32)

3D light: a1> 0, a2> 0, a3> 0: (33)

The eigenvalues ofR0, constituting the total intensity I¼ a1 + a2 + a3 of the

whole state R, are referred to as principal intensities and they are introduced

via the so-called intrinsic coordinate frame in which R0 is a diagonal matrix

(Dennis, 2004; Gil, 2014, 2015). Physically, for 1D light the electric field

vibrates in only one direction, viz., the light is linearly polarized, for 2D light
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the electric field is restricted to a fixed plane, and for 3D light the electric

field fluctuates in three orthogonal spatial directions in any reference frame.

Furthermore, for intensity-isotropic 2D light a1 ¼ a2 and a3 ¼ 0, while for

intensity-isotropic 3D light a1 ¼ a2 ¼ a3. It is important to understand that

the number of nonnegative eigenvalues of the full complex polarization

matrix R does not necessarily provide information about the physical

dimension of the light field. For example, the full polarization matrix of a

circularly polarized light beam involves just a single nonzero eigenvalue,

whereas its real part satisfies a1 ¼ a2 and a3 ¼ 0, hence corresponding to

(intensity-isotropic) 2D light in view of Eq. (32).

To characterize the dimensionality of a light field more quantitatively,

one may use the polarimetric dimension (Norrman, Friberg, et al., 2017)

D ¼ 3� 2d, (34)

where d is the dimensionality index, or the degree of intensity anisotropy, of the

polarization state R (Gil et al., 2019):

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

trR02

tr2R0 �
1

3

� �s
: (35)

Especially, the quantity d is the distance between the real-valued matrix R0

and the 3 � 3 identity matrix corresponding to intensity-isotropic 3D light,

with the scaling chosen so that 0� d� 1. The polarimetric dimension is thus

a real number that obeys 1�D� 3 and remains invariant under orthogonal

transformations. It should not be identified as such with the actual physical

dimension of the light [specified by Eqs. (31)–(33)], but as an effective

dimension describing the intensity-distribution spread.

The physical meaning of D becomes more clear by writing Eq. (34) in

terms of the eigenvalues of R0, viz.,

D ¼ 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ða1 � a2Þ2 + ða1 � a3Þ2 + ða2 � a3Þ2
� �q

a1 + a2 + a3
: (36)

The minimum D ¼ 1 is encountered only for 1D light (a2 ¼ a3 ¼ 0), while

the maximumD¼ 3 is saturated exclusively for intensity-isotropic 3D light

(a1 ¼ a2 ¼ a3). For 2D light (a3 ¼ 0, a2 > 0) necessarily 1<D� 2, with the

upper limit D ¼ 2 taking place for intensity-isotropic 2D light (a1 ¼ a2).

Values in the domain D > 2 are thereby clear signatures of a 3D light field

(3D light can nevertheless assume any value within the interval 1<D � 3).
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Fig. 15 provides a schematic illustration for the polarimetric dimension,

depicting principal-intensity distributions for three different 3D light fields.

In Fig. 15A a1 is significantly larger than a2 and a3, rendering the light vir-

tually one dimensional withD� 1. In Fig. 15B a1� a2≫ a3, whereupon the

light field is effectively 2D intensity-isotropic havingD� 2. In Fig. 15C a1
� a2 � a3, corresponding to intensity-isotropic 3D light with D � 3.

In the case of stationary evanescent waves in the spectral domain, when-

ever the excitation beam is partially polarized, i.e., hjEsj2i 6¼ 0, hjEpj2i 6¼ 0,

and jμj 6¼ 1, the ensuing partially coherent and partially polarized evanescent

field is invariably 3D in character (Norrman, Friberg, et al., 2017). In other

words, for an evanescent wave being partially coherent and partially polar-

ized it is never possible to find a fixed plane in which the electric field vector

is restricted. This implies that optical evanescent waves are predominantly

3D light fields, which requires a rigorous 3D treatment to fully understand

and characterize their statistical properties. It has been shown further that the

spectral polarimetric dimension of any stationary evanescent wave obeys

(Norrman, Friberg, et al., 2017)

Dðr,ωÞ ¼ DðωÞ � 3� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 3~n4χ4

p , (37)

with the upper bound reached when the incident light possesses

jμj ¼ 0,
hjEsj2i
hjEpj2i

¼ sin4 θ + γ4

χ4

� � jtpj
jtsj

� �2

: (38)

For a high refractive-index-contrast interface, such as GaP/air with ~n � 4 in

the visible regime (Palik, 1998), Eq. (37) implies that the polarimetric

dimension may be as high asD(ω)� 2.96, while for a usual SiO2/air surface

a1

a2

a3

a1

a2

a3

a1

a2

a3

A B C

Fig. 15 Examples of principal-intensity distributions for 3D light fields with polarimetric
dimension (A) D � 1, (B) D � 2, and (C) D � 3. From Norrman, A., Friberg, A. T., Gil, J. J., &
Set€al€a, T. (2017). Dimensionality of random light fields. Journal of the European Optical
Society-Rapid Publications, 13, 36.
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with ~n � 1:5 the maximum is roughly D(ω)� 2.67. We especially find that

the second condition in Eq. (38) corresponding to the maximum of D(ω)

does not coincide with hjEsj2i=hjEpj2i ¼ jtpj2=jtsj2 associated with the min-

ima μEMðωÞ ¼ 1=
ffiffiffi
2

p
and P3D(ω) ¼ 1/2 of Eqs. (29) and (30), respectively.

Consequently, an evanescent wave which is maximally 3D intensity isotro-

pic does not attain the lowest possible values for the degrees of coherence

and polarization, an indication that a 3D evanescent wave with high inten-

sity isotropy (polarimetric dimension) possesses a quite large spin anisotropy

(Gil et al., 2019).

4.4 Polarimetric nonregularity
A specific recent finding is that polarization states of 3D light fields can be

classified into regular states and nonregular states (Gil et al., 2017, 2018a). Such a

classification is based on the structure of the so-called characteristic decomposi-

tion of the 3 � 3 polarization matrix R (Gil, 2007; Gil & San Jos�e, 2010):

R ¼ I ½P1R̂p + ðP2 � P1ÞR̂m + ð1� P2ÞR̂u�: (39)

Here I¼ trR¼ λ1 + λ2 + λ3 is the intensity as before, with λ1� λ2� λ3� 0

being the eigenvalues of R, while

P1 ¼ λ̂1 � λ̂2, P2 ¼ 1� 3λ̂3 ð0 � P1 � P2 � 1Þ (40)

are the indices of polarimetric purity (Gil, 2007; San Jos�e & Gil, 2011), with

λ̂j ¼ λj=I for j � {1, 2, 3}. In addition,

R̂p¼Udiagð1,0,0ÞU{, R̂m¼ 1

2
Udiagð1,1,0ÞU{,

R̂u ¼ 1

3
Udiagð1,1,1ÞU{ ¼ 1

3
I,

(41)

where U is the unitary matrix that diagonalizes R, I is the 3 � 3 identity

matrix, and the dagger denotes conjugate transpose. While the matrices

R̂p and R̂u describe, respectively, a polarized state and an unpolarized 3D

state, the physical meaning of R̂m is more involved.

When R̂m is a real matrix, it represents unpolarized 2D light, i.e., light

whose electric field evolves fully randomly in a fixed plane. In this case

(and in the particular scenario P1 ¼ P2 for which R̂m is absent in the

characteristic decomposition) the polarization state R is called regular,

only encountered when the smallest eigenvalue 0 � m̂3 � 1=4of the real part

R̂0
m is zero (Gil et al., 2017). If R̂m is instead a complex matrix, it corresponds
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to an equiprobable mixture of two mutually orthogonal states whose electric

field ellipses lie in different planes (Gil et al., 2017), whereupon R̂m does not

represent unpolarized 2D light but genuine 3D light. The polarization stateR

of such a light field, met when 0 < m̂3 � 1=4, is said to be nonregular. The

maximum value m̂3 ¼ 1=4 is saturated when the middle component R̂m is

in a perfect nonregular state, viz., a state which is an equiprobable mixture of

a circularly polarized state and a mutually orthogonal linearly polarized state

(Gil et al., 2018a). The nonregularity of the full state R can be characterized

quantitatively by means of the degree of nonregularity (Gil et al., 2018a)

PN ¼ 4ðP2 � P1Þm̂3, (42)

with the minimum PN ¼ 0 always, and only, taking place for regular states,

while values within the interval 0 < PN � 1 are signatures of nonregularity.

The maximum PN ¼ 1 is reached exclusively for maximally nonregular states

with P1¼ 0, P2 ¼ 1, and m̂3 ¼ 1=4. Thus PN¼ 1 corresponds univocally to

3D polarization states satisfying R ¼ IR̂m and m̂3 ¼ 1=4, implying that all

maximally nonregular states are perfect nonregular states.

It has been shown that in the space–frequency domain the middle term

Φ̂mðr,ωÞof a stationary partially coherent and partially polarized evanescent
wave takes the form (Norrman et al., 2019)

Φ̂mðr,ωÞ¼ Φ̂mðωÞ¼ 1

2
ŝ�ŝT + p̂�p̂T
	 


, (43)

with the polarization vectors ŝ and p̂ given in Eq. (23). The state Φ̂mðωÞ in
Eq. (43) can thus be interpreted physically as an equiprobable mixture of a

linear s-polarized state and an elliptical p-polarized state. Most importantly,

the fact that Φ̂mðωÞ is a complex matrix dictates that any partially coherent

and partially polarized evanescent wave is always in a nonregular polarization

state (Norrman et al., 2019). Moreover, the degree of nonregularity for the

whole state in Eq. (27) reads (Norrman et al., 2019)

PNðr,ωÞ ¼ PNðωÞ ¼ 2ð1� P1Þ γ
χ

� �2

, (44)

with the associated indices of purity given as

P1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

ð1� jμj2Þwswp

ðws + wpÞ2
s

, P2 ¼ 1: (45)

The condition P2 ¼ 1 indicates that the last component in the characteristic

decomposition (39) always vanishes for the evanescent wave.
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From Eqs. (22), (44), and (45) one further concludes that the degree of

nonregularity of the evanescent wave is bounded from above as

PNðωÞ � 1� 1

2ð~n sin θÞ2 � 1
, (46)

with the upper limit saturated for an excitation beam satisfying

jμj ¼ 0,
hjEsj2i
hjEpj2i

¼ jtpj2
jtsj2

: (47)

In such a case P1 ¼ 0 according to Eq. (45), whereupon the characteristic

decomposition (39) states that the full polarization matrix of the evanes-

cent wave in Eq. (27) is directly proportional to the middle term in Eq.

(43). The conditions in Eq. (47) corresponding to the maximum value

of PN(ω) are actually exactly the same as those corresponding to the min-

imum values μEMðωÞ ¼ 1=
ffiffiffi
2

p
and P3D(ω) ¼ 1/2 of Eqs. (29) and (30),

respectively. This implies that an evanescent wave of maximal possible

degree of nonregularity has lowest attainable degrees of coherence and

polarization, and vice versa. As an example, if ~n � 4 as for GaP/air in

the visible regime (Palik, 1998), Eq. (46) indicates that the spectral degree

of nonregularity may be as high as PN(ω) � 0.97, which virtually corre-

sponds to a perfect nonregular state. In such a scenario, the evanescent

wave is in an equiprobable mixture of a linear s-polarized state and an

almost circular p-polarized state (Norrman et al., 2019). For a typical

SiO2/air interface (~n � 1:5), the maximum is about PN(ω) � 0.71.

5. Partially coherent surface plasmon polariton fields

Due to its unique physical characteristics, the celebrated SPP has been

in the spotlight of nanophotonics (Novotny & Hecht, 2012) and triggered

the emergence of plasmonics (Maier, 2007; Maradudin et al., 2014) as an

own separate field covering cross-disciplinary science and engineering

(Zayats, Smolyaninov, & Maradudin, 2005; Zhang, Zhang, & Xu, 2012).

As discussed in Sections 2 and 3, SPPs can have a significant impact on

the coherence of external light fields; yet, very little research has been

devoted to investigate the coherence of SPPs themselves. Usually the

SPPs are considered as completely coherent, but in practice thermal effects,

surface roughness, metal impurities, and random light fluctuations under
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SPP excitation, among other effects, inevitably reduce the SPP coherence to

some extent, rendering the SPP field partially coherent. However, there is

an increasing recognition that partial coherence, as a novel degree of free-

dom, has a decisive role in manipulating the spatial, temporal, and polariza-

tion properties of SPP fields (Aberra Guebrou, Laverdant, Symonds,

Vignoli, & Bellessa, 2012; Laverdant, Aberra Guebrou, Bessueille,

Symonds, & Bellessa, 2014; Norrman, Set€al€a, & Friberg, 2015b; Wang

et al., 2014). Controlling and customizing the coherence of SPPs, as of prop-

agating optical beams (Chen & Cai, 2014; Chen, Gu, Wang, & Cai, 2015;

Chen, Liu, Wang, Zhao, & Cai, 2014; Chen, Ponomarenko, & Cai, 2016,

2017; Chen,Wang, et al., 2014; Mao et al., 2019), is thereby of fundamental

importance andmay pave new avenues for sensing, interferometry, spectros-

copy, morphological studies, subwavelength imaging, excitation of nano-

particles, coupling of light-emitting elements, and photonic information

transfer.

A crucial step in this direction was taken recently via the advancement of

a general theory of partially coherent, polychromatic SPPs in the

Kretschmann setup (Norrman, Ponomarenko, & Friberg, 2016). The con-

cept of plasmon coherence engineering for tailoring the SPP field coherence

by controlling the statistical properties of the excitation light source was also

established (Norrman et al., 2016). Soon after, a simple and robust scheme

based on point-dipole nanoscattering to recover the SPP coherence from a

spectrum measurement in the far zone was proposed (Chen, Norrman,

Ponomarenko, & Friberg, 2017), which was later confirmed numerically

by studying scattering of partially coherent SPPs from a metallic nanostripe

(Daniel, Saastamoinen, Ponomarenko, & Friberg, 2019). In these contexts,

the coherent-mode decomposition (Mao, Chen, Ponomarenko, &

Friberg, 2018) and the two-point Stokes parameters (Chen, Norrman,

et al., 2017) have proven powerful in understanding the intrinsic SPP-

coherence character. Moreover, utilizing radially propagating SPPs, and

suitably customizing their correlations by means of plasmon coherence

engineering, enables to generate a variety of complex-structured SPP fields

of controlled coherence states (Chen, Norrman, Ponomarenko, & Friberg,

2018a, 2018b, 2019), with potential applications in nanoparticle excitation,

optical tweezing, plasmonic field traps, and other photonic manipulations

at subwavelength scales.

In this section, we review the recent breakthroughs and advances in this

emerging branch of nanophotonics—statistical plasmonics.

141Optical coherence and electromagnetic surface waves



5.1 Plasmon coherence engineering
Let us consider a polychromatic SPP field generated by a TM-polarized beam

in the Kretschmann setup (Fig. 16), involving a homogenous, isotropic, and

nonmagnetic metal film deposited on a glass prism and situated in the xy

plane. The planar metal–air interface coincides with z ¼ 0 and the SPP

propagation direction is taken along the x axis. The SPP electric field in

air, at a space–time point (r, t), then reads (Norrman et al., 2016)

Eðr, tÞ¼
Z ω+

ω�
EðωÞp̂ðωÞei½kðωÞ�r�ωt�dω, (48)

whereω	 is the (angular) frequency bandwidth,E(ω) denotes the (complex)

spectral amplitude of a monochromatic SPP at the origin (r ¼ 0), and

kðωÞ ¼ kxðωÞêx + kzðωÞêz, p̂ðωÞ ¼ ½kðωÞ � êy�=jkðωÞj (49)

are the SPP wave and unit polarization vectors, respectively, with êx, êy, and

êz being the Cartesian unit vectors. The film is assumed to be thick enough

so that any mode overlap across the metal can be neglected (Norrman,

Set€al€a, & Friberg, 2014a, 2014b), whereupon the components of the SPP

wave vector at the metal–air interface in Eq. (49) are given by (Norrman,

Set€al€a, & Friberg, 2013)

kxðωÞ¼ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðωÞ

EðωÞ+1

s
, kzðωÞ¼ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

EðωÞ+1

s
, (50)

where c is the speed of light and E(ω) is the complex (relative) permittivity of

the metal.

SPP

Glass

Metal
Air

Fig. 16 Excitation of a polychromatic SPP field in the Kretschmann configuration.
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The second-order correlations of a (generally nonstationary) electric

field are in the space–time and space–frequency domains encoded in the

temporal and spectral coherence matrices (Voipio, Set€al€a, & Friberg, 2013)

Γðr1, t1; r2, t2Þ ¼ hE�ðr1, t1ÞETðr2, t2Þi, (51)

Wðr1,ω1; r2,ω2Þ ¼ hE�ðr1,ω1ÞETðr2,ω2Þi, (52)

where the asterisk, superscript T, and angle brackets stand for complex con-

jugate, matrix transpose, and ensemble average, respectively, as before.

Taking E(r,t) in Eq. (48) as a field realization, we obtain the SPP temporal

coherence matrix (Norrman et al., 2016)

Γðr1, t1;r2, t2Þ¼
ZZ ω+

ω�
Wðr1,ω1; r2,ω2Þe�iðω2t2�ω1t1Þdω1dω2, (53)

including the corresponding SPP spectral coherence matrix

Wðr1,ω1; r2,ω2Þ¼W ðω1,ω2Þp̂�ðω1Þp̂Tðω2Þei½kðω2Þ�r2�k�ðω1Þ�r1�, (54)

which in turn contains the SPP spectral correlation function

W ðω1,ω2Þ¼ hE�ðω1ÞEðω2Þi: (55)

Eqs. (53) and (54) are general electric coherence matrices which cover any

partially coherent polychromatic SPP field; they place no restrictions on

metal dispersion/absorption, the field spectrum, or the spectral correlations

(Norrman et al., 2016).

It can be inferred from Eqs. (53) and (54) that once the metal parameters

and the frequency bandwidth are known, all elements apart fromW(ω1, ω2)

are specified in the coherence matrices. Hence, the SPP spectral correlation

functionW(ω1, ω2) in Eq. (55) provides an essential degree of freedom that can

be exploited to govern the spectral and thus also the temporal statistical

properties of the SPP field. The idea of plasmon coherence engineering is to

morph the SPP spectral correlation functionW(ω1,ω2) exactly into a desired

form by controlling the coherence state of the excitation light (Norrman

et al., 2016).

To this end, we first consider the angular spectrum representation

(Mandel &Wolf, 1995) of an incident, partially coherent, polychromatic light

beam. The spectral electric correlation function of the beam can be written as

WðkX1,ω1; kX2,ω2Þ¼ hE�ðkX1,ω1ÞEðkX2,ω2Þi, (56)
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where EðkX ,ωÞ is the electric field amplitude of the angular spectrum

mode at frequency ω, with kX being the tangential wave-vector component

in a new coordinate frame XZ, in which the Z axis makes an angle θ0 with
respect to the z axis of the original xz frame (Fig. 17). We further choose θ0
such that, in the xz frame, the tangential wave-vector component of the

beam mode at the central frequency ω0 and kX ¼ 0 within the angular

spectrum exactly corresponds to the real part kx
0 (ω0) of the SPP obtained

from Eq. (50), i.e.,

nðω0Þω0

c
sin θ0 ¼ k0xðω0Þ, (57)

where n(ω0) is the refractive index of the prism. This condition represents

precise phase matching between the central illuminating plane wave and the

central excited SPP mode at the metal–air interface.
Next, a similar phase matching condition must be imposed for the

other illumination plane waves as well to ensure that an SPP mode is gen-

erated at every frequency ω within the excitation source bandwidth. In

other words, for a frequency ω 6¼ ω0, the angular spectrum mode having

kX � n(ω)(ω/c)sinΔθ couples to the corresponding SPP mode, where Δθ
is the angle between the wave vector and Z axis. In the xz frame this

implies the constraint

nðωÞω
c
sin θ ¼ kZ sin θ0 + kX cos θ0 ¼ k0xðωÞ, (58)

z

xZ

X

0θ

θΔ

0ω
ω

SPP

Fig. 17 Notations related to plasmon coherence engineering with polychromatic
beam illumination. The angle θ0 between the xz and XZ frames corresponds to perfect
phase matching between the central angular spectrum mode of frequency ω0 and the
respective SPP. The angular spectrum wave of ω 6¼ ω0 and incident at an angle Δθ with
respect to the Z axis excites the associated SPP for every frequency within the excitation
bandwidth.
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with θ ¼ θ0 + Δθ and k2Z + k2X ¼ ½nðωÞω=c�2. By assuming a paraxial inci-

dent beam, i.e., Δθ � kX/kZ ≪ θ0 and kZ � n(ω)ω/c, we obtain from

Eqs. (57) and (58) the coupling condition

kX ¼ k0xðωÞ � k0xðω0Þ
cos θ0

: (59)

Thus, at each frequencyωwithin the bandwidth, the angular spectrumwave

satisfying Eq. (59) will generate the respective monochromatic SPP mode.

Eventually, as the spectral amplitudes of the SPP field and the illumination

obey EðωÞ∝ EðkX ,ωÞ, with the exact coupling strength specified by the

slab transmission coefficient, we obtain the relation between the SPP cor-

relation function and the correlation function of the incident beam

(Norrman et al., 2016):

W ðω1,ω2Þ∝ W k0xðω1Þ�k0xðω0Þ
cos θ0

,ω1;
k0xðω2Þ�k0xðω0Þ

cos θ0
,ω2

� �
: (60)

Eq. (60) dictates exactly how the spectral correlations of the illumination are

to be tuned for engineering the spectral correlations, and thereby all the

statistical properties, of the SPP field into the desired form.

5.2 Plasmon coherence determination
Optical coherence of a genuine vector-light field is usually determined in

Young’s two-pinhole experiment with the aid of polarization wave plates

and polarizers (Friberg & Set€al€a, 2016). Yet, in the case of optical near and

surface fields, customary polarization elements cannot be employed when

measuring such electromagnetic coherence, due to the specific field and nanoscale

features, whereupon other methods must be used (Lepp€anen, Friberg, &
Set€al€a, 2014). Recently it was shown that the electromagnetic coherence

of a statistically stationary, polychromatic SPP field can be determined by mea-

suring the far-field spectrum scattered by a nanoprobe placed in the vicinity of

the metal surface in the Kretschmann setup (Chen, Norrman, et al., 2017).

This result is understood by first considering the SPP coherence matrices

in Eqs. (53) and (54). Since different frequency components are uncorrelated

for a stationary field (Mandel & Wolf, 1995), the SPP spectral coherence

matrix becomes

Wðr1,r2,ωÞ¼W ðωÞp̂�ðωÞp̂TðωÞei½kðωÞ�r2�k�ðωÞ�r1�, (61)
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including the SPP spectral function

W ðωÞ ¼ hjEðωÞj2i: (62)

The corresponding SPP temporal coherence matrix, which in the stationary

scenario depends only on the time separation τ¼ t2 � t1, is obtained via the

(generalized) Wiener–Khinchin theorem (Mandel & Wolf, 1995)

Γðr1,r2,τÞ¼
Z ∞

0

Wðr1,r2,ωÞe�iωτdω: (63)

In particular, for a given metal, the two SPP coherence matrices are entirely

specified by the single spectral functionW(ω). Hence, onceW(ω) is known,
all the second-order statistical properties of the stationary SPP field can be

completely recovered. We demonstrate next how the function W(ω) may

be simply determined by utilizing nanoparticle scattering.

Let us consider a spherical metallic nanoparticle placed in close proximity

of the metal slab at the position r0 ¼ x0êx + z0êz (Fig. 18), with the radius

much smaller than the minimum wavelength and the minimum penetration

depth within the SPP bandwidth. The scattering can thereby be treated in

the electrostatic dipole approximation (Novotny & Hecht, 2012), where-

upon the radiated electric far field in the xz plane, at a distance s in the

Metal
Air

D
SPP

x

z

s

O

ŝ

0r

Glass

Fig. 18 Schematic of determining the electromagnetic coherence of a stationary, poly-
chromatic SPP field via nanoscattering in the Kretschmann setup. The geometry and the
SPP field are uniform in the y direction. The nanoparticle is located at point r0 near the
metal surface z¼ 0 and the scattered far field is observed by detector D at a distance s in
the direction ŝ from r0. From Chen, Y., Norrman, A., Ponomarenko, S. A., & Friberg, A. T.
(2017). Plasmon coherence determination by nanoscattering. Optics Letters, 42(17),
3279–3282.
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direction ŝ ¼ s=s [measured from r0 and not to be mixed with the unit

polarization vector in Eq. (23)], is given by

E∞ðr,ωÞ ¼ ω2

4πc2E0

� �
ŝ� ½dðr0,ωÞ � ŝ� e

iðω=cÞs

s
, (64)

with E0 being the vacuum permittivity and d(r0, ω) denoting the scatterer’s
dipole moment. In the electrostatic regime, d(r0, ω) is directly proportional
to the SPP field through (Novotny & Hecht, 2012)

dðr0,ωÞ ¼ αðωÞEðr0,ωÞ, αðωÞ ¼ 4πE0
εðωÞ � 1

εðωÞ+2 a3, (65)

where α(ω) is the polarizability, ε(ω) is the complex permittivity, and a is the

radius of the nanosphere. In Eqs. (64) and (65) we neglect the effects of

radiation reaction and the presence of the metal surface. In practice, α(ω)
will be replaced by an effective polarizability αeff(ω) and E∞(r, ω) acquires
an additional contribution from the metal reflection. These effects may

readily be included in a quantitative analysis and in experiments (Lepp€anen,
Saastamoinen, Lehtolahti, Friberg, & Set€al€a, 2016), and they will not impact

the main conclusions below.

In polar coordinates, with θ being the angle between ŝ and the x axis, we
obtain from Eqs. (64) and (65) the far-field expression

E∞ðr, θ,ωÞ ¼ ω2

4πc2E0

� �
αðωÞMðθÞEðr0,ωÞ e

iðω=cÞs

s
, (66)

where we have introduced the symmetric matrix

MðθÞ¼ sin2 θ � sin θ cos θ
� sin θ cos θ cos2 θ

� �
: (67)

Using Eq. (66) together with the propertyM2(θ)¼M(θ), one finds that the
spectrum of the scattered field in the far zone at point r becomes

S∞ðr,θ,ωÞ¼ tr½hE∗
∞ðr,θ,ωÞET

∞ðr,θ,ωÞi�

¼ ω2

4πc2E0

� �2 jαðωÞj2
s2

tr½MðθÞΦðr0,ωÞ�,
(68)

147Optical coherence and electromagnetic surface waves



whereΦ(r0, ω)¼ hE*(r0, ω)ET(r0, ω)i is the spectral polarization matrix of

the SPP field at point r0. According to Eq. (61),

Φðr0,ωÞ¼W ðωÞp̂�ðωÞp̂TðωÞe�2k00ðωÞ�r0 , (69)

with the double prime denoting the imaginary part. On combining Eqs. (68)

and (69), we then find a one-to-one relationship between the SPP spectral func-

tion W(ω) and the far-field spectrum S∞(r, θ, ω), viz.,

W ðωÞ ¼ 4πc2E0
ω2

� �2
s2

jαðωÞj2
e2k

00ðωÞ�r0

tr½MðθÞp̂*ðωÞp̂TðωÞ� S∞ðr, θ,ωÞ: (70)

Eq. (70) clearly implies that when the material parameters and the radius of

the nanoscatterer are known, the spectral function W(ω), and thereby the

spectral coherence matrix W(r1, r2, ω) in Eq. (61) as well as the temporal

coherence matrix Γ(r1, r2, τ) in Eq. (63), can be completely recovered from

just a single spectrum measurement in the far zone.

5.3 Coherent-mode representation
According to Wolf’s coherent-mode expansion (Mandel & Wolf, 1995), a par-

tially coherent field can be decomposed into a set of mutually uncorrelated

elementary coherent modes. Such a representation often proves instrumen-

tal to gain insight into a generally quite complicated space–time behavior of

partially coherent fields, and it also allows to assess how coherent, on aver-

age, a random field is within a finite volume (Ostrovsky, 2006). The

coherent-mode representation for partially coherent SPP fields has been

developed by expanding the SPP spectral correlation function W(ω1, ω2)

in Eq. (55) via scalar coherent modes as (Mao et al., 2018)

W ðω1,ω2Þ¼
X
n

βnφ
∗
nðω1Þφnðω2Þ, (71)

where {βn} are real and nonnegative eigenvalues (to ensure the nonnegative
definiteness condition of a coherence function) of the linear Fredholm inte-

gral equation, and the respective eigenfunctions {φn(ω)} form an orthonor-

mal set. It follows from Eqs. (53)–(55) and (71) that the SPP temporal

coherence matrix can be expressed as a vectorial coherent-mode representation

Γðr1, t1; r2, t2Þ¼
X
n

νnΦ∗
nðr1, t1ÞΦT

n ðr2, t2Þ, (72)
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where {Φn(r, t)} are coherent vector pseudo-modes; they are normalized, but gen-

erally not orthogonal even if the scalar coherentmodes {φn(ω)} are (Mao et al.,

2018). Yet, the coherent vector pseudo-modes are still uncorrelated and the

modal weights {νn}, which specify the fraction of the source energy carried

by a given mode, add up to the total energy of the source.

The coherent-mode representation outlined above is helpful in a quan-

titative assessment of how coherent the entire field is by means of the global

(which is sometimes also referred to as overall or effective) degree of coher-

ence (Blomstedt, Set€al€a, & Friberg, 2007b, 2015; Mandel & Wolf, 1995;

Ostrovsky, 2006). The global degree of coherence of the partially coherent

SPPs is then defined as the ratio of the energy carried by the lowest-order

mode to the total energy of the SPP source, in complete analogy with par-

tially coherent volume sources (Starikov, 1982), as

G ¼ ν0XNm�1

n¼0
νn

, (73)

whereNm is an effective number of coherent vectormodes. The quantityG is

bounded between 0 and 1,withG¼ 1 andG¼ 0 representing a fully coherent

and incoherent SPP source, respectively. Given the orthonormal modes and

the corresponding modal weights ofW(ω1, ω2), which can be determined,

at least in principle, by solving the Fredholm integral equation (Mandel &

Wolf, 1995), we can obtain the coherent vector pseudo-mode representa-

tion for any partially coherent SPP field in the Kretschmann setup, and thus

assess the average global coherence of the SPPs within an excitation volume.

As an example, we consider the vectorial coherent pseudo-mode repre-

sentation of narrowband SPP fields with spectral correlations of the Gaussian

Schell-model (GSM) type (Mao et al., 2018)

W ðω1,ω2Þ ¼ I0e
�½ðω1�ω0Þ2+ðω2�ω0Þ2�=4σ2s e�ðω1�ω2Þ2=2σ2c , (74)

where I0 is a constant, ω0 is the central frequency of the polychromatic SPP

field, and σs and σc denote the SPP spectral width and spectral coherence

width, respectively. The normalized eigenfunctions and the corresponding

eigenvalues of theGSM source can be obtained analytically (Mandel &Wolf,

1995). If we invoke the narrowband approximation E(ω)� E(ω0), we end up

with the (unnormalized) coherent pseudo-modes (Mao et al., 2018)

Θnðr, tÞ ¼ p̂ðω0ÞΘnðr, tÞ, (75)
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including the scalar modal functions

Θnðr, tÞ¼ 2π

c0

� �1=4
in

ð2nn!Þ1=2
ei½kðω0Þ�r�ω0t�

�Hn

kðω0Þ � r�ω0tffiffiffiffiffiffi
2c0

p
ω0

� �
e�½kðω0Þ�r�ω0t�2=ð4c0ω2

0Þ,

(76)

whereHn[�] is aHermite polynomial of order n, and c0 ¼ ða20 + 2a0b0Þ1=2with
a0 ¼ ð4σ2s Þ�1

and b0 ¼ ð2σ2c Þ�1
. Fig. 19 displays the space–time distributions

Fig. 19 Space–time distributions of the first four pseudo-mode amplitudes jΦn(x, t)j
for a narrowband GSM SPP field at an Ag/air interface having the central wavelength
λ0¼ 653 nm. The spectral width σs and the spectral coherence length σc are 0.02ω0 and
0.004ω0, respectively, where ω0 is the SPP central frequency. The quantity lSPP(λ0) is the
SPP propagation length. The complex permittivity of Ag is taken from empirical data
(Palik, 1998). From Mao, H., Chen, Y., Ponomarenko, S. A., & Friberg, A. T. (2018). Coherent
pseudo-mode representation of partially coherent surface plasmon polaritons. Optics
Letters, 43(6), 1395–1398.
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of the first four coherent pseudo-mode functionsΦnðx, tÞ � p̂ðω0Þ �Φnðx, tÞ
for narrowband GSM SPPs at an Ag/air surface with the SPP central wave-

length λ0¼ 653 nm. It can be inferred from Fig. 19 that each coherent mode

remains highly confined over the SPP propagation length lSPP(λ0) and that

the peak amplitude position of the mode experiences a time shift on SPP

propagation away from the excitation point. The lateral shift of each mode

in the space–time domain in the absence of dispersion arises from the mode

phase shift in the space–frequency domain. Further, the mode of order n has

exactly n nodes and thus appears to be split into n + 1 lobes due to the GSM

source mode modulation.

Fig. 20 shows the global degree of coherence G of narrowband GSM

SPPs for λ0 ¼ 653 nm at an Ag/air interface as a function of σc and σs.
One finds that G increases with the SPP spectral coherence length σc
(Fig. 20A) and decreases with the SPP spectral width σs (Fig. 20B). We also

observe that G tends to zero for spectrally uncorrelated SPPs (σc ! 0), even

though the longitudinal spatial coherence length of such SPPs remains on the

order of a few wavelengths. As monochromatic SPP fields (σs ! 0) are

completely coherent, their global degree of coherence is unity. It is also

instructive to conclude from Fig. 21 that the global degree of coherence of

the narrowband GSM SPPs is virtually independent of the central wavelength

λ0 in the visible range, and is only weakly affected by the metal properties, at

least, for typical plasmonic materials. Hence, the global degree of coherenceG

can be viewed as a robust measure of the overall narrowband SPP coherence.
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Fig. 20 Global degree of coherence G of a narrowband GSM SPP field with the central
wavelength λ0 ¼ 653 nm at an Ag/air interface as a function of (A) the spectral coher-
ence width σc and (B) the spectral width σs. In (A) σs ¼ 0.02ω0 and in (B) σc ¼ 0.02ω0,
where ω0 is the SPP central frequency. The complex permittivity of Ag corresponds to
empirical data (Palik, 1998). From Mao, H., Chen, Y., Ponomarenko, S. A., & Friberg, A. T.
(2018). Coherent pseudo-mode representation of partially coherent surface plasmon polar-
itons. Optics Letters, 43(6), 1395–1398.
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5.4 Two-point Stokes parameters
Alternatively to the coherence matrix formalism, the second-order corre-

lation properties of a planar light field can be described in terms of the two-

point Stokes parameters (Ellis & Dogariu, 2004; Korotkova & Wolf, 2005).

The two-point Stokes parameters have specific interpretations similar to

those of the usual (one-point) Stokes parameters and they have clear phys-

ical meanings in beam interferometry (Set€al€a et al., 2006a; Set€al€a, Tervo, &
Friberg, 2006b; Tervo, Set€al€a, Roueff, R�efr�egier, & Friberg, 2009; Tervo,

Set€al€a, Turunen, & Friberg, 2013), not merely for classical but also for

quantum light (Norrman, Blomstedt, et al., 2017; Norrman et al., 2020).

For a stationary, two-component field, the two-point Stokes parameters

may in the space–time domain be expressed as (Lepp€anen, Saastamoinen,

et al., 2014)

Snðr1,r2,τÞ¼ tr½Γðr1,r2,τÞσn�, n�f0,…,3g, (77)

where Γ(r1, r2, τ) is the 2� 2 electric coherence matrix, σ0 is the 2� 2 unit

matrix, and σ1, σ2, σ3 are the Pauli matrices. On using the normalization

snðr1, r2, τÞ ¼ Snðr1, r2, τÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiS0ðr1, r1, 0ÞS0ðr2, r2, 0Þ
p , n � f0,…, 3g, (78)
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Fig. 21 Global degree of coherence G of a narrowband GSM SPP field at an Ag/air
interface as a function of the central wavelength λ0 for different spectral coherence wid-
ths σc: σc ¼ 0.06ω0 (blue solid curve), σc ¼ 0.02ω0 (orange dashed curve), σc ¼ 0.004ω0

(red dotted curve). The green dash-dotted curve represents G at an Au/air interface with
σc ¼ 0.02ω0. The source spectral width σs is in all cases 0.02ω0, where ω0 is the central
frequency at λ0 ¼ 653 nm. Empirical data are used for the complex permittivities of Ag
and Au (Palik, 1998). From Mao, H., Chen, Y., Ponomarenko, S. A., & Friberg, A. T. (2018).
Coherent pseudo-mode representation of partially coherent surface plasmon polaritons.
Optics Letters, 43(6), 1395–1398.
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the electromagnetic degree of coherence (Tervo et al., 2003), describing the totality

of vector-field correlations, becomes (Friberg & Set€al€a, 2016)

γEMðr1, r2, τÞ ¼ 1

2

X3
n¼0

jsnðr1, r2, τÞj2
" #1=2

, (79)

being the temporal analog of the spectral electromagnetic degree of coher-

ence in Eq. (28).

In plasmonics, the role of the two-point Stokes parameters is more elusive,

as the SPP electric field is confined to the propagation plane, but nevertheless

they are measurable and yield detailed information about the SPP coherence

structure (Chen, Norrman, et al., 2017). According to Eqs. (61)–(63) and
(77), the SPP temporal two-point Stokes parameters take the form

Snðr1,r2,τÞ¼
Z ∞

0

Snðr1,r2,ωÞe�iωτdω, n� f0…,3g, (80)

where the SPP spectral two-point Stokes parameters read

S0ðr1,r2,ωÞ¼W ðωÞei½kðωÞ�r2�k�ðωÞ�r1�, (81)

S1ðr1,r2,ωÞ¼W ðωÞjkzðωÞj
2�jkxðωÞj2

jkðωÞj2 ei½kðωÞ�r2�k�ðωÞ�r1�, (82)

S2ðr1,r2,ωÞ¼W ðωÞ�2½k�xðωÞkzðωÞ�0
jkðωÞj2 ei½kðωÞ�r2�k�ðωÞ�r1�, (83)

S3ðr1,r2,ωÞ ¼W ðωÞ2½k
�
xðωÞkzðωÞ�00
jkðωÞj2 ei½kðωÞ�r2�k�ðωÞ�r1�, (84)

with the prime and double prime standing for the real and imaginary parts,

respectively. Eqs. (80)–(84) show explicitly that, for a given metal, the two-

point and thus also the one-point (r1 ¼ r2 ¼ r) Stokes parameters of a

statistically stationary SPP field are fully determined by the SPP spectral func-

tion W(ω) in Eq. (62). Consequently, employing the scheme of plasmon

coherence determination by nanoscattering discussed in Section 5.2, all

the SPP Stokes parameters and thereby also all the SPP statistical properties

can be completely ascertained.

Fig. 22 shows the equal-time (τ ¼ 0) longitudinal coherence behavior

of a stationary SPP field on an Ag/air interface (z1 ¼ z2 ¼ 0), excited by

two independent Kr lasers at point x1 ¼ 0 of wavelengths 676.4 and
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647.1 nm (Chen, Norrman, et al., 2017). One observes that both the elec-

tromagnetic degree of coherence γEM(x) as well as the magnitudes of

the normalized two-point Stokes parameters jsn(x)j, with the abbreviation

x ¼ x2, display a persistent, long-range coherence oscillation. The strong

coherence modulation follows from statistical similarity (Ponomarenko,

Roychowdhury, & Wolf, 2005; Voipio, Set€al€a, & Friberg, 2015) and is

not strictly periodic owing to the slightly different polarization states

and decay rates of the two SPP modes. We further find that apart from

js0(x)j, which describes the sum of the x- and z-polarized field correlations

between points (0, 0) and (x, 0), the main contributor to γEM(x) is js1(x)j,
i.e., the measure of the z-polarized field correlations over the x-polarized

ones, and to a lesser extent js3(x)j, which indicates excess of correlations

among the circularly polarized field components. The contribution from

js2(x)j, corresponding to correlations in the 	π/4-polarized field compo-

nents, is seen to be negligible. Similar relative strengths of the two-point

Stokes parameters are encountered for a broadband Gaussian SPP field

(Chen, Norrman, et al., 2017). These properties originate from the SPP

electric field being almost linearly polarized in the z direction, as does the fact

that the degree of polarization is nearly unity for SPP fields in general

(Norrman et al., 2016).

E
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(
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ns
x
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Fig. 22 Squared magnitudes of the normalized, equal-time, two-point Stokes param-
eters s0(x) (solid blue curve), s1(x) (dashed blue curve), s2(x) (dash-dotted blue curve),
and s3(x) (dotted blue curve), as well as the equal-time degree of electromagnetic
coherence γEM(x) (solid red curve), for a stationary SPP field excited by two indepen-
dent Kr lasers of wavelengths 676.4 and 647.1 nm at an Ag/air interface. The complex
permittivity of Ag is obtained from empirical data (Palik, 1998). From Chen, Y.,
Norrman, A., Ponomarenko, S. A., & Friberg, A. T. (2017). Plasmon coherence determina-
tion by nanoscattering. Optics Letters, 42(17), 3279–3282.
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5.5 Structured axiconic fields
Structured light, referring to optical fields with tailored amplitude, phase, and

polarization profiles, attracts ever-growing attention and has interdisciplinary

influences onmany applications (Rubinsztein-Dunlop et al., 2016). Structured

SPP fields occur in the form of Bessel (Bliokh, Gorodetski, Kleiner, &

Hasman, 2008; Garcia-Ortiz, Coello, Han, & Bozhevolnyi, 2013; Lerman,

Yanai, & Levy, 2009), vortex (Gorodetski, Niv, Kleiner, & Hasman, 2008;

Kim et al., 2010), long-range nondiffracting cosine-Gaussian (Lin et al.,

2012), polarization-tunable (Lin et al., 2013), and self-acceleratingAiry beams

(Epstein & Arie, 2014; Minovich et al., 2011; Salandrino & Christodoulides,

2010), among others (Wang & Zhao, 2019). Nevertheless, most structured

SPP fields investigated so far have been either monochromatic, i.e., spatially

and temporally coherent, or polychromatic but spatially completely coherent.

Only very recently structured SPP fields of arbitrary spectrum and arbitrary

degree of coherence have been explored (Chen et al., 2018a, 2018b, 2019).

We first review a class of structured, partially coherent SPP fields rem-

iniscent of traditional optical axicon fields (Jaroszewicz, Burvall, & Friberg,

2005), referred to as axiconic surface plasmon polariton (ASPP) fields (Chen et al.,

2018b). The considered geometry is akin to the usual Kretschmann setup

(Fig. 23), but now the SPP field at the metal–air interface (z ¼ 0) is com-

posed of radially propagating SPPs with their excitation positions distributed

uniformly along a circular ring of radius a. We let r0 ¼ �aêkðθÞ represent
the excitation point of an SPP that propagates in the direction of êkðθÞ ¼
cos θêx + sin θêy toward the circle center (r ¼ 0), where 0 � θ < 2π is

the azimuthal angle with respect to the x axis. On taking all the contributing

SPPs into account, the spatial electric part of the ASPP field in air, for

(x2+y2)1/2 � a and at angular frequency ω, is given by (Chen et al., 2018b)

Eðr,ωÞ¼
Z 2π

0

Eðθ,ωÞp̂ðθ,ωÞeikðθ,ωÞ�½r�r0ðθÞ�dθ, (85)

Glass
Metal
Air

y

x

z

SPP

Fig. 23 Geometry for synthesis of structured partially coherent SPP fields via radially
propagating SPPs of arbitrary correlations. One of the SPPs, excited on a circle at the
metal–air interface and propagating toward the center, is explicitly displayed in the figure.
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where E(θ,ω) is a complex field amplitude of the monochromatic SPP at the

excitation point, and

kðθ,ωÞ¼ kkðωÞêkðθÞ+ kzðωÞêz, p̂ðθ,ωÞ¼ k̂ðθ,ωÞ� ½êz� êkðθÞ� (86)

are the corresponding SPP wave and unit polarization vectors, respectively,

with k̂ðθ,ωÞ ¼ kðθ,ωÞ=jkðωÞj [we note that the wave-vector magnitude

jk(ω)j is independent of θ]. Again, the film is assumed thick enough so

that mode overlap across the metal is negligible, whereupon the tangential

and normal wave-vector components in Eq. (86) coincide with those in

Eq. (50).

Considering E(r, ω) in Eq. (85) as a realization of a stationary field, the

ASPP spectral coherence matrix [Eq. (2)] takes the form

Wðr1,r2,ωÞ¼ e
�2k00kðωÞa

ZZ 2π

0

W ðθ1,θ2,ωÞp̂�ðθ1,ωÞp̂Tðθ2,ωÞ
�ei½kðθ2,ωÞ�r2�k�ðθ1,ωÞ�r1�dθ1dθ2,

(87)

where the double prime denotes the imaginary part, as before, and

W ðθ1,θ2,ωÞ¼ hE�ðθ1,ωÞEðθ2,ωÞi (88)

is the angular SPP correlation function. Eq. (87) shows that the excitation cir-

cle radius a acts effectively merely as a scaling factor of W(r1, r2, ω), and
thereby of all the quantities derived from it, highlighting the structural sta-

bility of the ASPP field with respect to variations in a (Chen et al., 2018b).

Yet, in practical cases, the SPP propagation length lSPPðωÞ ¼ 1=k00kðωÞ
serves as a natural maximum radius. Furthermore, utilizing plasmon coher-

ence engineering enables to sculpt the angular SPP correlation function

W(θ1, θ2, ω) into virtually any form, thus rendering the ASPP fields

broadly versatile as regards their fundamental physical properties, such as

the spectral density, polarization state, energy flow, and coherence

(Chen et al., 2018b).

Fig. 24A illustrates the spectral density [Eq. (5)] for an ASPP field

composed of correlated SPPs on an Ag/air interface at free-space wave-

length λ ¼ 532 nm for a ¼ lSPP(λ). Each SPP mode has the same initial

intensity hjE(θ, ω)j2i ¼ hjE(ω)j2i ¼ ISPP(ω). The profile displays clearly

the characteristic oscillatory pattern of an axicon field, similar to that of a

plasmonic lens (Lerman et al., 2009; Liu et al., 2005), with a strong and

highly confined peak at the circle center, induced by interference among

the SPPs. As the SPP correlations become weaker, the confined intensity
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at the center gradually fades away and the spatial distribution of the spectral

density becomes smoothly distributed over the interior of the circle (Chen

et al., 2018b). In the fully uncorrelated limit, the oscillatory pattern totally

disappears and the maximum spectral density shifts toward the excitation

positions (circle’s edge). Nevertheless, as shown in Fig. 24B, with r1 ¼ 0

and r2 ¼ r, the axiconic profile reemerges in the electromagnetic degree

of coherence [Eq. (28)] due to statistical similarity (Ponomarenko et al.,

2005; Voipio et al., 2015), whereby the ASPP field is highly coherent near

the center even if the SPPs are fully uncorrelated and thus do not interfere

(Chen et al., 2018b).

5.6 Structured lattice fields
The second class of structured, partially coherent SPP fields that we consider

are surface plasmon polariton lattice (SPPL) fields (Chen et al., 2018a). The

geometry is the same as for ASPP fields (Fig. 23), but instead of an SPPmode

continuum the SPPL fields consist of a discrete number N of uniformly dis-

tributed SPPs, such that r0n ¼ �aên represents the excitation position of the

nth SPP propagating in the direction ên ¼ cos θnêx + sin θnêy toward the
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Fig. 24 (A) Spatial behavior of the spectral density S(r, ω) for an ASPP field composed of
fully correlated SPPs, and (B) spatial behavior of the spectral electromagnetic degree of
coherence μEM(r, ω) for an ASPP field consisting of fully uncorrelated SPPs, at an Ag/air
surface at free-space wavelength λ ¼ 532 nm. In (A) ISPP(ω) is the initial SPP intensity
and a ¼ lSPP(λ), where a is the circle radius and lSPP(λ) is the SPP propagation length.
In (B) μEM(r, ω) is independent of a but (x2+y2)1/2 � a. The complex permittivity of Ag
is from empirical data (Palik, 1998). From Chen, Y., Norrman, A., Ponomarenko, S. A., &
Friberg, A. T. (2018b). Partially coherent axiconic surface plasmon polariton fields.
Physical Review A, 97(4), 041801(R).
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circle center, with θn ¼ 2π(n � 1)/N being the respective azimuthal angle.

The SPPL electric field realization in air is then (Chen et al., 2018a)

Eðr,ωÞ ¼
XN
n¼1

EnðωÞp̂nðωÞeiknðωÞ�ðr�r0nÞ, (89)

where En(ω) is the spectral amplitude of the nth SPP mode at the excitation

point, while the SPP wave and unit polarization vectors read

knðωÞ ¼ kkðωÞên + kzðωÞêz, p̂nðωÞ ¼ k̂nðωÞ � ðêz � ênÞ (90)

with k̂nðωÞ ¼ knðωÞ=jkðωÞj . As for the ASPP fields, the wave-vector

magnitude jk(ω)j is independent of θn, and the tangential and normal

wave-vector components in Eq. (90) are the same as those in Eq. (50).

Averaging over the electric field realizations in Eq. (89), we end up with

the SPPL spectral coherence matrix

Wðr1,r2,ωÞ¼ e
�2k00kðωÞa

XN
n,m¼1

WnmðωÞp̂∗
nðωÞp̂T

mðωÞei½kmðωÞ�r2�k�nðωÞ�r1�, (91)

containing the (discrete) angular SPP correlation function

WnmðωÞ¼ hE∗
nðωÞEmðωÞi: (92)

It follows from Eqs. (90)–(92) that for a given complex permittivity E(ω),
excitation radius a, and mode numberN, everything besides the SPPL spec-

tral correlation function Wnm(ω) is determined in Eq. (91). Consequently,

similarly toW(θ1, θ2, ω) in Eq. (88) of the ASPP field, the quantityWnm(ω)
provides an additional degree of freedom that can be tailored via plasmon

coherence engineering to control the fundamental physical characteristics

of the partially coherent SPPL field.

As an example, Figs. 25A–C show the spatial behavior of the spectral

electromagnetic degree of coherence [Eq. (28)] for an SPPL field composed

of fully uncorrelated SPPs on an Ag/air interface at free-space wavelength

λ ¼ 532 nm. Here r1 ¼ 0, r2 ¼ r, and each SPP mode has the same initial

intensity hjEn(ω)j2i ¼ hjE(ω)j2i ¼ ISPP(ω). Moreover, we stress that

μEM(r, ω) is independent of the circle radius a (for any N) which merely

scales the general SPPL coherence matrix in Eq. (91); hence the spatial

coherence structure of the SPPL fields is stable (Chen et al., 2018a).

Despite the absence of SPP interference, Figs. 25A–C demonstrate clearly
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that the electromagnetic degree of coherence has a lattice-like, sub-

wavelength structure with periodic rotational symmetry that originates from

statistical similarity (Ponomarenko et al., 2005; Voipio et al., 2015). In the

extreme scenario of fully correlated SPPmodes, the coherence lattices disappear

due to complete coherence, but the lattice structure remarkably reemerges in

terms of spectral density lattices owing to beating among the SPP modes, as

illustrated in Figs. 25D–F. Also polarization lattices can be customized bymod-

ifying the correlations of the individual SPPs via plasmon coherence engi-

neering (Chen et al., 2018a). The subwavelength periodicity of SPPL

fields is attractive for many applications, ranging from controlled excitation

of randommolecule or quantum dot sets (coherence lattices) to nanoparticle
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Fig. 25 (A)–(C) Spatial behavior of the spectral electromagnetic degree of coherence
μEM(r, ω) for SPPL fields composed of uncorrelated SPPs at an Ag/air interface at
free-space wavelength λ ¼ 532 nm. (D)–(F) Spatial behavior of the spectral density
S(r, ω) for SPPL fields consisting of correlated SPPs for the same parameters as in
(A)–(C). The number of SPP modes is N ¼ 3 [(A) and (D)], N ¼ 5 [(B) and (E)], and
N ¼ 6 [(C) and (F)]. Note that S(r, ω) is normalized with the initial SPP intensity
ISPP(ω) and the squaredmode number N2. The complex permittivity of Ag is from empir-
ical data (Palik, 1998). From Chen, Y., Norrman, A., Ponomarenko, S. A., & Friberg, A. T.
(2018a). Coherence lattices in surface plasmon polariton fields. Optics Letters, 43(14),
3429–3432.
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trapping (spectral density or polarization lattices). In particular, partially

coherent SPPL fields may be used to engineer controllable multiparticle

nanoantenna array configurations which are stable to surface defects and

environment fluctuations.

5.7 Structured vortex fields
The third and last family of structured surface electromagnetic fields that we

discuss are partially coherent SPP fields carrying optical vortices, i.e., surface

plasmon polariton vortex (SPPV) fields (Chen et al., 2019). Similarly to the

ASPP fields, the SPPV fields are formed by a continuum of radially propagat-

ing SPP modes, but now each SPP is equipped with a certain initial phase

profile. The initial phase distribution among the SPPs can be introduced,

e.g., with the help of a plasmonic vortex lens, plasmonic metasurface, or by

using a circularly polarized, spatially partially coherent illumination beam car-

rying orbital angular momentum (OAM). Prior to focusing the source beam onto

the glass prism and metal film, one first transmits the beam through a circular

spatial filter with a narrow transmission band situated in front of the prism

(Fig. 26A), yielding a ring of circularly polarized light with the phase gradient

following the input beam’s OAM (Fig. 26B). The angle of incidence φinc,

controlled by the focal distance of the focusing lens, optimizes phase matching

for SPP excitation [Eq. (57)]. The illuminated ring then excites SPPs with

appropriate phase distributions propagating toward the circle center.

As for the ASPP field, we let r0ðθÞ ¼ �aêkðθÞdenote the excitation posi-
tion of an individual SPP that travels in the direction êkðθÞ¼ cosθêx +
sinθêy, where 0 � θ < 2π is the azimuthal angle with respect to the x axis.

A BLens

Glass

Metal

Filter

inc

Fig. 26 Excitation of the SPPV fields. (A) Focused circularly polarized, OAM carrying beam
incident onto the circular spatial filter, glass prism, and metal slab structure, with φinc

being the angle of incidence of light selected by the filter. (B) Illustration of the polariza-
tion and phase distribution of the light on the circular ring transmitted by the filter, with s
¼ 1 and l¼ 1. FromChen, Y., Norrman, A., Ponomarenko, S. A., & Friberg, A. T. (2019). Partially
coherent surface plasmon polariton vortex fields. Physical Review A, 100(5), 053833.
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Likewise, we let k(θ, ω) and p̂ðθ,ωÞ in Eq. (86) stand for the wave and unit

polarization vectors, respectively, of the SPP mode. A spectral realization of

the SPPV electric field in air can thus be expressed as (Chen et al., 2019)

Eðr,ωÞ¼
Z 2π

0

Eðθ,ωÞp̂ðθ,ωÞeikðθ,ωÞ�½r�r0ðθÞ�eiϕðθÞdθ, (93)

where E(θ, ω) is a complex-valued amplitude and ϕ(θ) is the initial phase of
the monochromatic SPP at the excitation point. As in our context the SPPV

field is excited by a circularly polarized, OAM carrying incident beam, the

spin–orbit coupling of light in SPP generation (Bliokh, Rodrı́guez-Fortuño,

et al., 2015) implies that the initial phase difference between any two SPP

constituents satisfy

ϕðθ1Þ � ϕðθ2Þ ¼ mðθ1 � θ2Þ: (94)

Herem¼ s+ l, with s and l denoting the spin and orbital angular momentum

(in units of ħ per photon) of the illumination beam, respectively.

Assuming a time-stationary electric field, one obtains the SPPV spectral

coherence matrix

Wðr1,r2,ωÞ ¼ e
�2k00kðωÞa

ZZ 2π

0

W ðθ1,θ2,ωÞp̂�ðθ1,ωÞp̂Tðθ2,ωÞ
� ei½kðθ2,ωÞ�r2�k�ðθ1,ωÞ�r1�eimðθ2�θ1Þdθ1dθ2,

(95)

whereW(θ1, θ2,ω) is the angular SPP correlation function, as specified in Eq.

(88), governing the correlations among the individual SPPs excited at differ-

ent angular coordinates. The coherent-mode expansion of W(θ1, θ2, ω) in
terms of a two-dimensional Fourier series with respect to the angular coor-

dinates has been adopted for analyzing the physical properties of partially

coherent SPPV fields possessing arbitrary correlations (Chen et al., 2019).

In particular,

W ðθ1, θ2,ωÞ ¼ ISPPðωÞ
X∞
n¼�∞

βnðωÞeinðθ2�θ1Þ, (96)

where ISPP(ω) is the initial intensity of an SPP, n is the mode index, and βn(ω)
are real and nonnegative Fourier coefficients that ensure W(θ1, θ2, ω) is a
genuine correlation function (Mandel &Wolf, 1995). Hence, each Fourier

coefficient βn(ω) corresponds to the modal weight that represents the

amount of energy carried by the individual coherent mode.
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Employing the coherent-mode representation, the energy density, energy

flow, polarization, and orbital and spin angular momenta (OAMand SAM) of the

structured SPPV fields can be assessed by regarding electromagnetic coher-

ence as a new degree of freedom that can be controlled by adjusting the indi-

vidual SPP correlations (Chen et al., 2019). Fig. 27 shows the energy density

and in-plane energy flow, and Fig. 28 shows the in-plane polarization-state

distribution, for SPPV fields on an Au/air interface at free-space wavelength

λ¼ 632.8 nmwith a variable number of coherentmodes and averageOAM.

We note that in Fig. 27 also the magnetic field is taken into account.

Whenever the SPPs are mutually fully uncorrelated, the average OAM

and SAM for the SPPV field are zero, and the energy flow and polarization

state exhibit radial distribution patterns, with the energy density showing

a hot spot at the circle center (Figs. 27A and 28A), similar to that of a partially

coherent ASPP field (Fig. 24). In contrast, the SPPV fields carrying

OAM exhibit a circular energy flow around the excitation ring center

(Figs. 27B–H), the signature of an optical vortex, resulting in doughnut-like

energy density distributions at the metal–air interface. The energy circu-

lation direction is determined by the sign of the average OAM: a positive

OAM induces a counterclockwise circulation, whereas the energy flow is

reversed for a negative OAM (Figs. 27C and D). The characteristic

doughnut-type energy density distribution generally disappears as the num-

ber of coherent modes is increased (Figs. 27E–H), implying reduced spatial

coherence. For example, when the number of modes reaches 15 (Fig. 27H),

the energy density displays a flat-top profile at the metal surface, caused by

partially impaired interference among the partially correlated SPPs.

Moreover, the in-plane polarization distribution of the partially coher-

ent SPPV fields carrying OAM has a rather intricate local structure,

exhibiting nonuniform regions of elliptical polarization (Figs. 28B–H).

Hence, such SPPV fields carry also a nonzero average SAM. Further, as

the average OAM flips sign, the right and left elliptically polarized regions

switch places (Figs. 28C and D), thereby causing the SAM to change direc-

tion.We also observe that the polarization distribution of the fully coherent

SPPV field, composed of only a single coherent mode, is quite involved

(Fig. 28E). As the number of modes increases, therefore reducing the field

coherence, the in-plane polarization turns progressively more radial

(Figs. 28F–H) and becomes strictly radial in the limit N ! ∞. The novel

physical properties of the SPPV fields are expected to find numerous appli-

cations, for instance, to nanoparticle trapping and angular momentum con-

trolled SPP lasers.
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a ¼ lSPP(λ). The energy density w(r, ω) is normalized with respect to E0S(0, ω), where E0 is the vacuum permittivity and Sð0,ωÞ ¼ 4π2ISPPðωÞ exp ½�2k00kðωÞa�.
The complex permittivity of Au is fromempirical data (Palik, 1998). FromChen, Y., Norrman, A., Ponomarenko, S. A., & Friberg, A. T. (2019). Partially coherent surface
plasmon polariton vortex fields. Physical Review A, 100(5), 053833.
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6. Concluding remarks

In conclusion, we have reviewed the fundamental discoveries and

recent progress in the application of optical coherence theory to electromag-

netic surface waves. Although optical coherence and electromagnetic sur-

face waves are both venerable subjects, the two first crossed their paths

only a couple of decades ago. The two key results that have emerged since

then may be summarized as follows. On the one hand, it has been firmly

established that the presence of surface-wave excitations in a system can pro-

foundly affect the coherence properties of external light fields. In particular,

surface-wave resonances may have significant impacts on the spectrum,

polarization, and spatial correlation properties of thermal near-field radia-

tion, and they can be harnessed to modulate, control, and measure the spatial

coherence of optical beams in various interferometric contexts. On the

other hand, there is now a solid recognition that coherence of electromag-

netic surface waves themselves does not only yield deeper understanding of

optical near-field coherence, but it also provides a novel and versatile degree

of freedom to control the unique physical properties of these waves.

Especially, it is now appreciated that partially polarized evanescent waves

are genuinely three-dimensional in nature with subwavelength coherence

characteristics, and that the concept of plasmon coherence engineering

enables to tailor structured SPP fields of flexible intensity, polarization,

coherence, energy flow, and angular momentum distributions.

The two research thrusts that have led to these major results appear to be

complementary: they facilitate fundamental insights into the intricate

coherence structure of complex electromagnetic fields, and they are antic-

ipated to find use in diverse light–matter interactions and photonic manip-

ulations at the nanoscale. At the same time, there are naturally still a rich

diversity of physics to explore and important open questions that deserve fur-

ther investigation on this subject. For example, whereas coherence modula-

tion of thermal radiation and optical beams under surface-polariton excitation

has been verified in practice, to the best of our knowledge, the experimental

confirmation of three-dimensional evanescent waves and structured SPP

fields of controlled coherence is still lacking. The possibilities of customizing

curved light trajectories, spin–orbit interactions, optical forces, nanoscale
thermodynamics, and even relativistic effects through coherence control in

surface-wave contexts also constitute interesting, fully unexplored research

topics. Ultimately, the emergence of quantum nanophotonics and quantum
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plasmonics, as well as the foundational problem of quantizing the electromag-

netic near field, identify new directions and challenges for future research on

optical coherence and electromagnetic surface waves.
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